Reazioni chimiche

Prof. Ersilia Conte

Definizione di reazione chimica

Una reazione chimica è un processo che porta alla formazione di nuove sostanze, <u>i prodotti</u>, trasformando profondamente le sostanze di partenza, <u>i reagenti</u>.

Le equazioni di reazione

Reazione di combustione del metano

$$CH_4 + O_2 \longrightarrow H_2O + CO_2$$

Gli **indici** delle formule indicano quanti atomi di quella specie sono presenti nella molecola

$$CH_4 + 2O_2 \longrightarrow 2H_2O + CO_2$$

Ogni reazione ubbidisce alla legge di conservazione della massa (Lavoisier), mediante i coefficienti stechiometrici è possibile mantenere inalterato il numero di atomi dei reagenti e quello dei prodotti.

© 2010-2011 Nuova Secondaria - EDITRICE LA SCUOLA

Tappe per un corretto bilanciamento (recupero)

- 1. Stabilire quali sono i reagenti e prodotti
- 2. Scrivere correttamente le formule dei reagenti e dei prodotti; gli indici delle formule non possono essere modificati durante il bilanciamento
- 3. Bilanciare la reazione introducendo i coefficienti stechiometrici opportuni.

$$2 H_2 + O_2 \longrightarrow 2 H_2O$$

Tappe per un corretto bilanciamento (continua)

- Bilanciare prima gli atomi dei metalli e dei non metalli
- 2. Se vi sono degli ioni poliatomici (SO_4^{2-} , CO_3^{2-}) bilanciarli come gruppi di atomi.
- 3. Bilanciare per ultimi gli atomi di H e O)

$$2 H_2 + O_2 \longrightarrow 2 H_2O$$

Calcoli stechiometrici

- I coefficienti di una reazione indicano i rapporti secondo cui si combinano i reagenti a formare i prodotti.
- I rapporti sono ricavati a livelli microscopico ma hanno validità anche a livello macroscopico facendo ricorso al concetto di mole.

1 mole contiene 6,02 · 10²³ molecole

$$3 H_2 + N_2 \longrightarrow 2 NH_3$$

3 molecole H ₂	1 molecola N ₂	2 molecole NH ₃	3:1
3 moli H ₂	1 moli N ₂	2 moli NH ₃	3:1
6,06 g H ₂	28 g N ₂	34,06 g NH ₃	3:1

Calcoli stechiometrici conclusioni

- I coefficienti di una reazione bilanciata indicano sia il numero di molecole delle sostanze coinvolte, sia il numero delle MOLI.
- Conoscendo l'equazione chimica siamo in grado di fare previsioni quantitative.

1	Scrivere l'equazione di reazione bilanciata
2	Determinare le masse molari delle sostanze coinvolte
3	Calcolare il numero di moli dei reagenti o dei prodotti richiesti
4	Calcolare le masse dei reagenti o dei prodotti richiesti

Problema

Mettendo a reagire Zn e HCl si ottiene il sale corrispondente e si osserva lo sviluppo di un gas. Quanto HCl occorre per far reagire 24g di Zn? Quanto sale si forma?

- 1.Si scrive la reazione bilanciata: Zn + 2HCl → 2ZnCl₂ + H₂
 2.Si calcolano le masse molari: MZn = 65,37g/mol,
 MHCl=36,46g/mol, MZnCl₂= 136,27g/mol, MH₂=2.016g/mol
 3.Si calcolano le moli di Zn n = 24/65,37= 0,37mol
 4.Si trovano le altre moli: le moli di H₂ sono in rapporto 1:1 e
- 4.Si trovano le altre moli: le moli di H_2 sono in rapporto 1:1 e quindi sono 0,37mol; le moli di HCl e $ZnHCl_2$ sono 1:2 quindi 1:2 = 0,37mol: n n = 0,74mol.
- 5.Si calcolano le masse corrispondenti: mHCl= 0.74x36.46=27g, mZnCl₂=0.37x136.27=50g.

Reagente limitante

approfondimento

In una reazione chimica non sempre i reagenti sono in quantità stechiometrica, si definisce <u>reagente</u> <u>limitante</u> il reagente che si esaurisce per primo durante una reazione.

Es. Si pongono a reagire 20mol di K_2SO_4 e 16mol di CaCl₂, individuare il reagente limitante e calcolare quanto CaSO₄ si forma.

K ₂ SO ₄	CaCl ₂	→	CaSO ₄	2KC1
Reagente in eccesso	Reagente limitante			
20mol	16mol	\rightarrow	16mol	32mol

Resa di una reazione

La maggior parte delle reazioni chimiche non procede fino all'esaurimento di tutti i reagenti sono incomplete o possono formarsi anche sottoprodotti.

Si definisce <u>resa teorica</u> (R_T) la massima quantità di prodotto ottenibile in base alla stechiometria della reazione.

Si definisce <u>resa percentuale</u> (R_p) il rapporto tra la quantità di prodotto effettivamente ottenuta (R_E) e la resa teorica per 100.

$$R_{p} = \underline{R}_{E_{-}} \times 100$$

$$R_{T}$$

I vari tipi di reazione

Tipo di reazione	Equazione caratteristica
Sintesi	$A + B \rightarrow C$
Decomposizione	$AB \rightarrow A + B$
Scambio semplice	$A + BC \rightarrow AC + B$
Doppio scambio	$AB + CD \rightarrow AD + BC$

Reazioni di sintesi

approfondimento

Reazione di sintesi	Esempio
Non metallo + O ₂ →ossido acido	$C + O_2 \rightarrow CO_2$
metallo + O ₂ →ossido basico	$2Cu + O_2 \rightarrow 2 CuO$
Metallo + non metallo → sale binario	$2A1 + 3I_2 \rightarrow 2A1I$
Metallo + H_2 → idruro	$2\text{Li} + \text{H}_2 \rightarrow 2\text{LiH}$
Non metallo + $H_2 \rightarrow idracido$	$Cl_2 + H_2 \rightarrow 2HCl$
Ossido acido + H ₂ O → ossiacido	$SO_3 + H_2O \rightarrow H_2SO_4$
Ossido basico + H ₂ O → idrossido	BaO + $H_2O \rightarrow Ba(OH)_2$
© 2010-2011 Nuova Seconda	ria - EDITRICE LA SCUOLA

Reazioni di decomposizione

Reazioni di decomposizione: quando 1 unico composto si decompone in 2	Esempi
Perossido di idrogeno	$2H_2O_2 \rightarrow 2H_2O + O_2$
Clorato di potassio	$2KClO_3 \rightarrow 2KCl + 3O_2$
Carbonati (eccetto quelli dei metalli alcalini)	$CaCO_3 \rightarrow CaO + CO_2$
bicarbonato	$2NaHCO_3 \rightarrow Na_2CO_3 + CO_2 + H_2O$
idrossidi	$Ni(OH)_2 \rightarrow NiO + H_2O$

Reazioni di scambio o spostamento

Reazioni di spostamento	Esempio
Elemento dal proprio ossido	$H_2 + CuO \rightarrow H_2O + Cu$
	$5C + 2P_2O_5 \rightarrow 5CO_2 + P_4$
	$2A1 + Cr_2O_3 \rightarrow Al_2O_3 + 2Cr$
	2Mg + SiO → 2MgO +Si
Idrogeno dal proprio composto	$2Na + 2H_2O \rightarrow H_2 + 2NaOH$
	Ni + H ₂ O → nessuna reazione
	$Ni + 2HC1 \rightarrow H_2 + NiC1$
Ioni metallici dai loro sali	$Cu + 2AgNO_3 \rightarrow 2Ag + Cu(NO_3)_2$
	$Zn + CuSO_4 \rightarrow Cu + ZnSO_4$
	Cu + $ZnSO_4 \rightarrow$ nessuna reazione

Reazioni di spostamento

approfondimento

Un elemento libero sposta un altro elemento da un composto.

La reazione è spontanea se l'elemento libero è più reattivo di quello presente nel composto con cui reagisce.

Serie di reattività di alcuni composti, la reattività del C e dell'H₂ dipende dalle condizioni di reazione ->

Ca, Li, Na Mg Zn Cr Fe (H_2) Ni Hg Ag Au

Reazione di doppio scambio

Reazione di doppio scambio	Esempi
Sale + acido	$BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$
Sale 1 + sale 2	$Na_2S + KNO_3 \rightarrow nessuna reazione$
	Na ₂ S + CuCl ₂ → CuS + 2NaCl
Carbonato + acido	$CaCO_3 + 2HC1 \rightarrow CaCl_2 + CO_2 + H_2O$
Solfito + acido	$Na_2SO_3 + 2HC1 \rightarrow 2NaC1 + SO_2 + H_2O$
Sale d'ammonio + idrossido	$NH_4Cl + KOH \rightarrow NH_3 + KCl + H_2O$
Idrossido + acido	NaOH + HCl → NaCl + H ₂ O
	$2KOH + H2SO4 \rightarrow K2SO4 + 2H2O$
	$Mg(OH)_2 + HNO_3 \rightarrow Mg(NO_3)_2 + 2H_2O$
Ossido + acido	$NiO + 2HNO_3 \rightarrow Ni (NO_3)_2 + H_2O$
Ossido acido + idrossido	$SO_3 + NaOH \rightarrow Na_2SO_4 + 2H_2O$