Sistemi eterogenei ed omogenei e tecniche di separazione, principi e metodi.

Prof.ssa Conte Ersilia

La materia

SI DEFINISCE MATERIA:

tutto ciò che si manifesta ai nostri sensi e occupa uno spazio (*VOLUME*) e possiede una *MASSA*.

La materia non è continua, ma costituita da microscopiche particelle in continuo movimento.

La materia può esistere in tre stati fisici, detti stati di aggregazione:

Stato solido - Stato liquido - Stato aeriforme

La miscela

- La materia può presentarsi come <u>sostanza pura</u>: descrivibile da un elemento o da una formula chimica ben precisa. Ma più di frequente si presenta come <u>miscela.</u>
- Si definisce miscela una porzione di materia formata da più sostanze. Miscele sono l'acqua di mare, l'aria, il vino.....la maggior parte dei materiali che incontriamo quotidianamente.
- Esistono due tipi di miscele:

ETEROGENEE E OMOGENEE

Omogeneità chimica e fisica

Una porzione di materia *fisicamente* e *chimicamente* omogenea ha le seguenti caratteristiche:

- 1. È presente in un solo stato fisico
- 2. La sua composizione chimica è omogenea: ovvero la miscela di sostanze diverse di cui è costituita sono distribuite in modo uniforme. I singoli componenti risultano indistinguibili.
- 3. E' riconoscibile una sola fase

Sistema omogeneo

Sistema omogeneo

Si osserva una sola fase

un solo stato fisico omogenea chimicamente Sostanze pure

Miscele omogenee

Miscele omogenee

approfondimento

Le miscele omogenee sono anche chiamate SOLUZIONI: SOLUTO + SOLVENTE

A seconda dello stato fisico in cui presentano sono:

- 1. Soluzioni gassose: aria
- 2. Soluzioni liquide: acqua potabile, vino
- 3. Soluzioni solide: leghe metalliche

Eterogeneità chimica e fisica

Una porzione di materia *fisicamente* e *chimicamente* eterogenea ha le seguenti caratteristiche:

- 1. Sono presenti più di uno stato fisico
- La sua composizione chimica è eterogenea: ovvero la miscela di sostanze diverse di cui è costituita sono distribuite in modo <u>non</u> uniforme. I singoli componenti risultano distinguibili.
- 3. Si possono identificare più di una fase

Sistema eterogeneo

Sistema eterogeneo

Si osservano due o più fasi Più stati fisici eterogenea chimicamente Sostanze pure

Miscele eterogenee

Miscele eterogenee

approfondimento

Le miscele eterogenee sono classificate a seconda dello stato fisico in cui presentano:

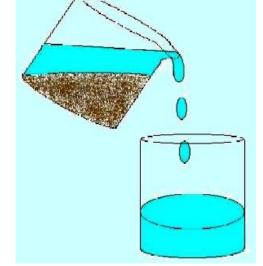
- 1. Miscele solido-solido
- 2. Miscele liquido-solido
- 3. Miscele liquido-liquido
- 4. Miscele liquido-gas
- 5. Miscele solido-gas

Sintesi 1

	definizione	sostanza	miscuglio
Sistema omogeneo	è costituito da una sola fase	acqua pura, oro puro, cloruro di sodio puro	acqua di rubinetto, sale marino, acciaio, leghe metalliche
Sistema eterogeneo	è costituito da due o più fasi	acqua pura e ghiaccio	acqua e sabbia, legno, granito, latte, marmo, fumo, sabbia

Tecniche di separazione

I vari componenti delle miscele possono essere isolate grazie all'applicazione di opportune tecniche di separazione.


La scelta è determinata dalle proprietà chimiche e fisiche dei componenti della miscela e sfruttano le differenze esistenti.

Infatti sebbene le diverse componenti siano mescolate conservano le loro caratteristiche chimico-fisiche specifiche.

Decantazione

Per separare miscugli Solido- liquidi

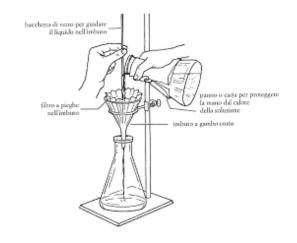
- <u>Decantare</u> significa <u>travasare</u> un liquido da un contenitore in un altro.
- Tecnica utilizzata per separare le sospensioni, in cui il materiale sospeso (più pesante) pian piano si deposita sul fondo, <u>sedimentazione</u>.
- Una volta depositato si sposta il liquido soprastante versandolo con cautela in un altro contenitore.

SFRUTTA LA DIVERSA DENSITÀ

Centrifugazione

Per separare miscugli Solido- liquidi

- Se la miscela è costituita da particelle solide di piccole dimensioni che sedimentano in tempi molto lunghi, si può utilizzare la tecnica della <u>centrifugazione</u>
- Si utilizza a tal fine la CENTRIFUGA, uno strumento in grado di girare le miscele a forte velocità.
- I campioni sottoposti a centrifuga, grazie alla forza centrifuga, che agisce in misura diversa a seconda della diversa densità delle particelle, tendono ad impaccare sul fondo i solidi sospesi in soluzione.

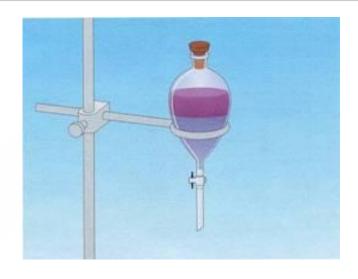

SFRUTTA IL DIVERSO PESO

Filtrazione

Per separare miscugli Solido- liquidi o solidi - aeriformi

- E' una delle tecniche più utilizzate per separare meccanicamente <u>solidi e</u> <u>liquidi</u> oppure <u>solidi-aeriformi</u>,
- si basa sull'impiego di filtri porosi che possono essere di varia natura: di porcellana, di vetro poroso o più semplicemente di carta opportunamente piegata.
- Il filtro, che può avere diversa porosità, trattiene il residuo solido.

SFRUTTA LA DIVERSA DIMENSIONE DELLE PARTICELLE



Imbuto separatore

per separare miscele liquido-liquido

- Se due liquidi sono immiscibili e hanno una diversa densità è possibile separarli meccanicamente mediante l'utilizzo di un imbuto separatore.
- La fase più densa si trova in basso ed è facilmente rimuovibile aprendo il rubinetto.

SFRUTTA LA DIVERSA DENSITA'

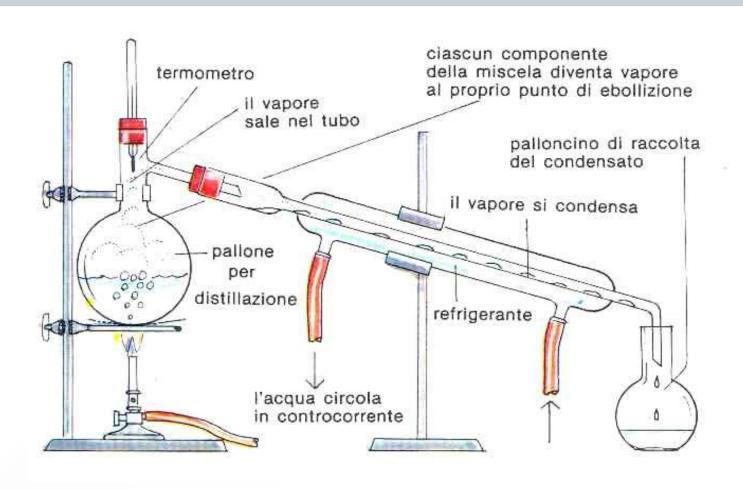
L'imbuto separatore viene utilizzato nella tecnica chiamata estrazione con solvente: che utilizza la diversa miscibilità dei componenti di una miscela con solventi immiscibili.

Cristallizzazione

per separare miscele solido-solido

- Tecnica che si basa sulla diversa solubilità delle sostanze da separare.
- Utilizzando diversi solventi è possibile operare una separazione dei diversi componenti la miscela.
- Per recuperare le sostanze sciolte si possono evaporare le soluzioni o si favorisce la precipitazione modificando le temperature e le concentrazioni.

SFRUTTA LA DIVERSA SOLUBILITA'

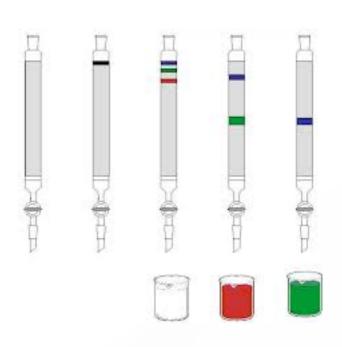

Distillazione:

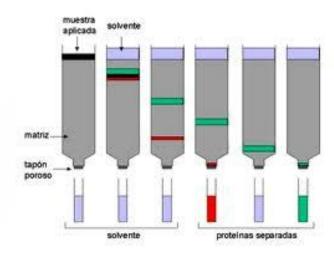
per separare miscele <u>liquido-liquido o</u> soluzioni

- La distillazione è la tecnica che consente di separare le sostanze in base alla loro temperatura di ebollizione.
- Si usa per separare miscele omogenee liquide e necessita di uno strumento: apparecchio di distillazione (vedi slide seguente).
- <u>Distillazione semplice</u>: la miscela viene portata all'ebollizione, si ottiene con facilità la separazione del solvente dal soluto di una soluzione.
- <u>Distillazione frazionata:</u> si può ottenere la separazione di miscele i cui componenti, tutti liquidi, hanno punti di ebollizione anche abbastanza ravvicinati.

SFRUTTA LA DIVERSA TEMPERATURA DI EBOLLIZIONE

Apparecchio di distillazione



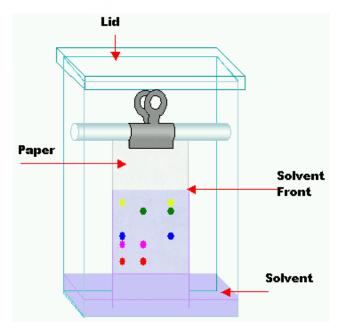

Cromatografia

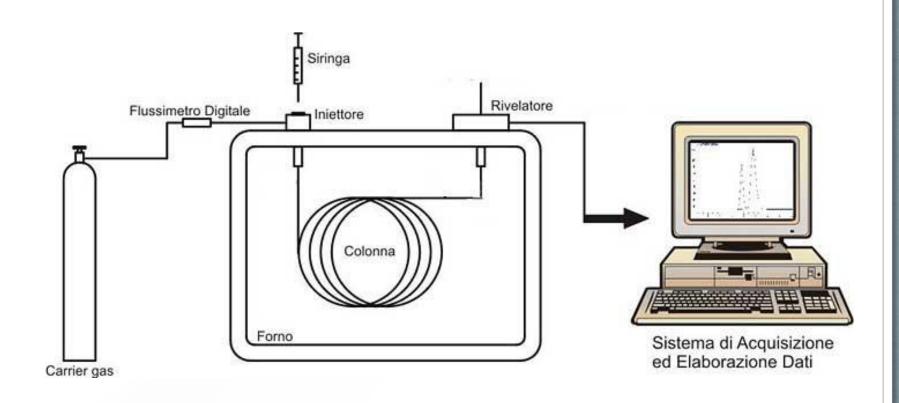
per separare miscele <u>di composti</u> <u>organici</u>

- Si fonda sul principio dell'assorbimento selettivo, sulla proprietà che hanno alcune sostanze, sciolte in opportuno solvente (eluente) di aderire in modo diverso a materiali inerti (allumina, silice, carta...) migrando quindi con velocità diverse.
- · Comunemente si utilizzano diversi tipi di tecniche

Cromatografia su colonna




Cromatografia su strato sottile


La miscela di pigmenti, prima di aggiungere l'eluente

Dopo aver aggiunto l'eluente, i componenti della miscela si sono separati.

Gas-cromatografia

