Problemi di massimo e minimo

Alessandro Musesti

Università Cattolica del Sacro Cuore

Introduzione

I problemi di massimo e minimo rappresentano una tipologia di esercizi molto importante, non solo perché sono quasi sempre presenti nella prova dell'Esame di Stato, ma sopratutto perché hanno un notevole collegamento con le applicazioni.

Introduzione

I problemi di massimo e minimo rappresentano una tipologia di esercizi molto importante, non solo perché sono quasi sempre presenti nella prova dell'Esame di Stato, ma sopratutto perché hanno un notevole collegamento con le applicazioni.

È molto semplice, infatti, immaginare delle situazioni concrete, anche in ambiti molto diversi tra loro, in cui è utile risolvere un problema di questo genere.

Nel prossimo lucido ne elencheremo alcuni esempi.

 una ditta vuole minimizzare il tempo e i costi di produzione dei suo articoli; 	oi

- una ditta vuole *minimizzare* il tempo e i costi di produzione dei suoi articoli;
- un investitore, che conosce i vari tassi di rendita di alcuni fondi, vuole massimizzare il guadagno;

- una ditta vuole *minimizzare* il tempo e i costi di produzione dei suoi articoli;
- un investitore, che conosce i vari tassi di rendita di alcuni fondi, vuole massimizzare il guadagno;
- un rappresentante vuole elaborare un percorso di lunghezza minima che lo porti da tutti i clienti;

- una ditta vuole *minimizzare* il tempo e i costi di produzione dei suoi articoli;
- un investitore, che conosce i vari tassi di rendita di alcuni fondi, vuole massimizzare il guadagno;
- un rappresentante vuole elaborare un percorso di lunghezza minima che lo porti da tutti i clienti;
- un maratoneta, che sa di avere a disposizione una certa quantità di energia e di potenza, vuole minimizzare il tempo della sua gara, senza però rischiare di "scoppiare";

- una ditta vuole *minimizzare* il tempo e i costi di produzione dei suoi articoli;
- un investitore, che conosce i vari tassi di rendita di alcuni fondi, vuole massimizzare il guadagno;
- un rappresentante vuole elaborare un percorso di lunghezza minima che lo porti da tutti i clienti;
- un maratoneta, che sa di avere a disposizione una certa quantità di energia e di potenza, vuole minimizzare il tempo della sua gara, senza però rischiare di "scoppiare";
- un progettista di auto vuole trovare una forma ottimale che massimizzi il volume e minimizzi la resistenza dell'aria:

- una ditta vuole *minimizzare* il tempo e i costi di produzione dei suoi articoli;
- un investitore, che conosce i vari tassi di rendita di alcuni fondi, vuole massimizzare il guadagno;
- un rappresentante vuole elaborare un percorso di lunghezza minima che lo porti da tutti i clienti;
- un maratoneta, che sa di avere a disposizione una certa quantità di energia e di potenza, vuole minimizzare il tempo della sua gara, senza però rischiare di "scoppiare";
- un progettista di auto vuole trovare una forma ottimale che massimizzi il volume e minimizzi la resistenza dell'aria:
-

- una ditta vuole *minimizzare* il tempo e i costi di produzione dei suoi articoli;
- un investitore, che conosce i vari tassi di rendita di alcuni fondi, vuole massimizzare il guadagno;
- un rappresentante vuole elaborare un percorso di lunghezza minima che lo porti da tutti i clienti;
- un maratoneta, che sa di avere a disposizione una certa quantità di energia e di potenza, vuole minimizzare il tempo della sua gara, senza però rischiare di "scoppiare";
- un progettista di auto vuole trovare una forma ottimale che massimizzi il volume e minimizzi la resistenza dell'aria;
-

Naturalmente, i problemi che si affrontano al Liceo sono delle enormi semplificazioni rispetto a quelli appena enunciati, ma servono per imparare a muovere i primi passi in questo campo.

- una ditta vuole *minimizzare* il tempo e i costi di produzione dei suoi articoli;
- un investitore, che conosce i vari tassi di rendita di alcuni fondi, vuole massimizzare il guadagno;
- un rappresentante vuole elaborare un percorso di lunghezza minima che lo porti da tutti i clienti;
- un maratoneta, che sa di avere a disposizione una certa quantità di energia e di potenza, vuole minimizzare il tempo della sua gara, senza però rischiare di "scoppiare";
- un progettista di auto vuole trovare una forma ottimale che massimizzi il volume e minimizzi la resistenza dell'aria;
-

Naturalmente, i problemi che si affrontano al Liceo sono delle enormi semplificazioni rispetto a quelli appena enunciati, ma servono per imparare a muovere i primi passi in questo campo.

La disciplina che si occupa di studiare questi tipi di problemi, e le tecniche matematiche utili a risolverli, si chiama **ottimizzazione**.

Intanto ripassiamo brevemente alcuni concetti: data una funzione $f:D\to\mathbb{R}$, un **punto di massimo** della funzione (se esiste) è un punto $x_M\in D$ tale che

$$f(x_M) \ge f(x)$$
 per ogni $x \in D$.

Intanto ripassiamo brevemente alcuni concetti: data una funzione $f:D\to\mathbb{R}$, un **punto di massimo** della funzione (se esiste) è un punto $x_M\in D$ tale che

$$f(x_M) \ge f(x)$$
 per ogni $x \in D$.

Viceversa, un **punto di minimo** è un punto $x_m \in D$ tale che

$$f(x_m) \le f(x)$$
 per ogni $x \in D$.

Intanto ripassiamo brevemente alcuni concetti: data una funzione $f:D\to\mathbb{R}$, un **punto di massimo** della funzione (se esiste) è un punto $x_M\in D$ tale che

$$f(x_M) \ge f(x)$$
 per ogni $x \in D$.

Viceversa, un **punto di minimo** è un punto $x_m \in D$ tale che

$$f(x_m) \le f(x)$$
 per ogni $x \in D$.

Quindi un punto di massimo è un elemento del dominio su cui la funzione raggiunge il suo valore più grande, mentre sul punto di minimo raggiunge il valore più piccolo.

Intanto ripassiamo brevemente alcuni concetti: data una funzione $f:D\to\mathbb{R}$, un **punto di massimo** della funzione (se esiste) è un punto $x_M\in D$ tale che

$$f(x_M) \ge f(x)$$
 per ogni $x \in D$.

Viceversa, un **punto di minimo** è un punto $x_m \in D$ tale che

$$f(x_m) \le f(x)$$
 per ogni $x \in D$.

Quindi un punto di massimo è un elemento del dominio su cui la funzione raggiunge il suo valore più grande, mentre sul punto di minimo raggiunge il valore più piccolo.

Naturalmente, i punti di massimo e minimo potrebbero anche essere tanti, o potrebbero non esistere.

Ad esempio, se $f:]-1; 1[\to \mathbb{R}$ è definita da

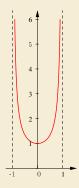
$$f(x) = \frac{1}{1 - x^2}$$

si ha che esiste un unico punto di minimo $x_m=0$ e non ci sono punti di massimo, perché la funzione tende a $+\infty$.

Ad esempio, se $f:]-1;1[o\mathbb{R}$ è definita da

$$f(x) = \frac{1}{1 - x^2}$$

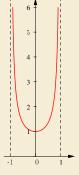
si ha che esiste un unico punto di minimo $x_m=0$ e non ci sono punti di massimo, perché la funzione tende a $+\infty$.



Ad esempio, se $f:]-1; 1[\to \mathbb{R}$ è definita da

$$f(x) = \frac{1}{1 - x^2}$$

si ha che esiste un unico punto di minimo $x_m=0$ e non ci sono punti di massimo, perché la funzione tende a $+\infty$.

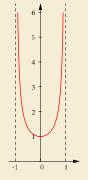


Oppure, se $f:[0;+\infty[\to\mathbb{R}$ è data da $f(x)=e^{-x}$, si ha che c'è un unico punto di massimo $x_M=0$ ma non ci sono punti di minimo, perché la funzione tende a 0 ma non lo raggiunge mai.

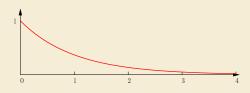
Ad esempio, se $f:]-1; 1[\to \mathbb{R}$ è definita da

$$f(x) = \frac{1}{1 - x^2}$$

si ha che esiste un unico punto di minimo $x_m=0$ e non ci sono punti di massimo, perché la funzione tende a $+\infty$.



Oppure, se $f:[0;+\infty[\to\mathbb{R}\ \text{è data da}\ f(x)=e^{-x}]$, si ha che c'è un unico punto di massimo $x_M=0$ ma non ci sono punti di minimo, perché la funzione tende a 0 ma non lo raggiunge mai.



Un risultato fondamentale in questo contesto è il **Teorema di Weierstrass** (o Teorema dei valori estremi): purtroppo la dimostrazione di questo teorema richiede alcuni concetti avanzati, quindi non potremo presentarla.

Un risultato fondamentale in questo contesto è il **Teorema di Weierstrass** (o Teorema dei valori estremi): purtroppo la dimostrazione di questo teorema richiede alcuni concetti avanzati, quindi non potremo presentarla.

Teorema

Una funzione continua $f:[a;b] \to \mathbb{R}$ definita su un intervallo [a;b] chiuso e limitato ammette sempre punti di massimo e di minimo.

Un risultato fondamentale in questo contesto è il **Teorema di Weierstrass** (o Teorema dei valori estremi): purtroppo la dimostrazione di questo teorema richiede alcuni concetti avanzati, quindi non potremo presentarla.

Teorema

Una funzione continua $f:[a;b] \to \mathbb{R}$ definita su un intervallo [a;b] chiuso e limitato ammette sempre punti di massimo e di minimo.

Questo teorema ci garantisce che il problema dell'ottimizzazione ammette soluzione quando la funzione è definita su un chiuso limitato ed è continua.

Un risultato fondamentale in questo contesto è il **Teorema di Weierstrass** (o Teorema dei valori estremi): purtroppo la dimostrazione di questo teorema richiede alcuni concetti avanzati, quindi non potremo presentarla.

Teorema

Una funzione continua $f:[a;b] \to \mathbb{R}$ definita su un intervallo [a;b] chiuso e limitato ammette sempre punti di massimo e di minimo.

Questo teorema ci garantisce che il problema dell'ottimizzazione ammette soluzione quando la funzione è definita su un chiuso limitato ed è continua. Torniamo ai due esempi precedenti, in cui non c'era esistenza: in entrambi la funzione è continua, ma

Un risultato fondamentale in questo contesto è il **Teorema di Weierstrass** (o Teorema dei valori estremi): purtroppo la dimostrazione di questo teorema richiede alcuni concetti avanzati, quindi non potremo presentarla.

Teorema

Una funzione continua $f:[a;b] \to \mathbb{R}$ definita su un intervallo [a;b] chiuso e limitato ammette sempre punti di massimo e di minimo.

Questo teorema ci garantisce che il problema dell'ottimizzazione ammette soluzione quando la funzione è definita su un chiuso limitato ed è continua. Torniamo ai due esempi precedenti, in cui non c'era esistenza: in entrambi la funzione è continua, ma

• nel primo esempio il dominio]-1;1[non è **chiuso**;

Un risultato fondamentale in questo contesto è il **Teorema di Weierstrass** (o Teorema dei valori estremi): purtroppo la dimostrazione di questo teorema richiede alcuni concetti avanzati, quindi non potremo presentarla.

Teorema

Una funzione continua $f:[a;b] \to \mathbb{R}$ definita su un intervallo [a;b] chiuso e limitato ammette sempre punti di massimo e di minimo.

Questo teorema ci garantisce che il problema dell'ottimizzazione ammette soluzione quando la funzione è definita su un chiuso limitato ed è continua. Torniamo ai due esempi precedenti, in cui non c'era esistenza: in entrambi la funzione è continua, ma

- nel primo esempio il dominio]-1;1[non è **chiuso**;
- nel secondo esempio il dominio $[0; +\infty[$ non è **limitato**.

Da qui in avanti cercheremo i massimi e minimi di una funzione che supporremo derivabile, quindi potremo usare gli strumenti del calcolo differenziale.

Da qui in avanti cercheremo i massimi e minimi di una funzione che supporremo derivabile, quindi potremo usare gli strumenti del calcolo differenziale.

Come vedremo, questo è un bel vantaggio!

Da qui in avanti cercheremo i massimi e minimi di una funzione che supporremo derivabile, quindi potremo usare gli strumenti del calcolo differenziale.

Come vedremo, questo è un bel vantaggio!

Infatti sappiamo bene che per una funzione derivabile i massimi e i minimi che si trovano *all'interno* dell'intervallo sono caratterizzati dall'avere la derivata nulla.

Da qui in avanti cercheremo i massimi e minimi di una funzione che supporremo derivabile, quindi potremo usare gli strumenti del calcolo differenziale.

Come vedremo, questo è un bel vantaggio!

Infatti sappiamo bene che per una funzione derivabile i massimi e i minimi che si trovano *all'interno* dell'intervallo sono caratterizzati dall'avere la derivata nulla. Non solo: se la derivata cambia di segno prima e dopo il punto, allora questo è

Da qui in avanti cercheremo i massimi e minimi di una funzione che supporremo derivabile, quindi potremo usare gli strumenti del calcolo differenziale.

Come vedremo, questo è un bel vantaggio!

Infatti sappiamo bene che per una funzione derivabile i massimi e i minimi che si trovano *all'interno* dell'intervallo sono caratterizzati dall'avere la derivata nulla. Non solo: se la derivata cambia di segno prima e dopo il punto, allora questo è

• un massimo se la derivata passa da positiva a negativa

Da qui in avanti cercheremo i massimi e minimi di una funzione che supporremo derivabile, quindi potremo usare gli strumenti del calcolo differenziale.

Come vedremo, questo è un bel vantaggio!

Infatti sappiamo bene che per una funzione derivabile i massimi e i minimi che si trovano *all'interno* dell'intervallo sono caratterizzati dall'avere la derivata nulla. Non solo: se la derivata cambia di segno prima e dopo il punto, allora questo è

- un massimo se la derivata passa da positiva a negativa
- un minimo se la derivata passa da negativa a positiva

Da qui in avanti cercheremo i massimi e minimi di una funzione che supporremo derivabile, quindi potremo usare gli strumenti del calcolo differenziale.

Come vedremo, questo è un bel vantaggio!

Infatti sappiamo bene che per una funzione derivabile i massimi e i minimi che si trovano *all'interno* dell'intervallo sono caratterizzati dall'avere la derivata nulla. Non solo: se la derivata cambia di segno prima e dopo il punto, allora questo è

- un massimo se la derivata passa da positiva a negativa
- un minimo se la derivata passa da negativa a positiva

Quindi per trovare i massimi e minimi studieremo il segno della derivata prima risolvendo la disequazione

$$f'(x) \geq 0$$

cercando i punti in cui cambia segno.

Se la funzione è derivabile due volte, c'è una condizione che potrebbe farci evitare di risolvere la disequazione sul segno della derivata prima.

Se la funzione è derivabile due volte, c'è una condizione che potrebbe farci evitare di risolvere la disequazione sul segno della derivata prima.

Infatti una condizione sufficiente è:

Se la funzione è derivabile due volte, c'è una condizione che potrebbe farci evitare di risolvere la disequazione sul segno della derivata prima.

Infatti una condizione sufficiente è:

•
$$f'(\overline{x}) = 0$$
, $f''(\overline{x}) > 0$ \Rightarrow punto di minimo

Se la funzione è derivabile due volte, c'è una condizione che potrebbe farci evitare di risolvere la disequazione sul segno della derivata prima.

Infatti una condizione sufficiente è:

- $f'(\overline{x}) = 0$, $f''(\overline{x}) > 0 \Rightarrow \text{punto di minimo}$
- $f'(\overline{x}) = 0$, $f''(\overline{x}) < 0$ \Rightarrow punto di massimo

Derivata seconda

Se la funzione è derivabile due volte, c'è una condizione che potrebbe farci evitare di risolvere la disequazione sul segno della derivata prima.

Infatti una condizione sufficiente è:

- $f'(\overline{x}) = 0$, $f''(\overline{x}) > 0 \Rightarrow \text{punto di minimo}$
- $f'(\overline{x}) = 0$, $f''(\overline{x}) < 0$ \Rightarrow punto di massimo

Purtroppo, se la derivata seconda in \overline{x} è nulla non possiamo concludere niente, quindi questo metodo potrebbe non produrre risultati.

Un esempio tipico è quello della funzione $f:[-1;1] o \mathbb{R}$ definita da

$$f(x)=x^4.$$

Un esempio tipico è quello della funzione $f:[-1;1] o \mathbb{R}$ definita da

$$f(x)=x^4.$$

La funzione è derivabile due volte: si ha $f'(x) = 4x^3$, e dunque si annulla solo per $\overline{x} = 0$.

Un esempio tipico è quello della funzione $f:[-1;1]
ightarrow \mathbb{R}$ definita da

$$f(x)=x^4.$$

La funzione è derivabile due volte: si ha $f'(x) = 4x^3$, e dunque si annulla solo per $\overline{x} = 0$.

Ma se in questo punto calcoliamo la derivata seconda otteniamo

$$f''(x) = 12x^2 \Rightarrow f''(0) = 0.$$

Un esempio tipico è quello della funzione $f:[-1;1]
ightarrow \mathbb{R}$ definita da

$$f(x)=x^4.$$

La funzione è derivabile due volte: si ha $f'(x) = 4x^3$, e dunque si annulla solo per $\overline{x} = 0$.

Ma se in questo punto calcoliamo la derivata seconda otteniamo

$$f''(x) = 12x^2 \Rightarrow f''(0) = 0.$$

Quindi non possiamo concludere niente sulla natura del punto $\bar{x} = 0$.

Un esempio tipico è quello della funzione $f:[-1;1]
ightarrow \mathbb{R}$ definita da

$$f(x)=x^4.$$

La funzione è derivabile due volte: si ha $f'(x) = 4x^3$, e dunque si annulla solo per $\overline{x} = 0$.

Ma se in questo punto calcoliamo la derivata seconda otteniamo

$$f''(x) = 12x^2 \Rightarrow f''(0) = 0.$$

Quindi non possiamo concludere niente sulla natura del punto $\overline{x}=0$. Se invece studiamo il segno della derivata prima:

$$4x^3 \ge 0 \quad \Rightarrow \quad x \ge 0$$

Un esempio tipico è quello della funzione $f:[-1;1]
ightarrow \mathbb{R}$ definita da

$$f(x)=x^4.$$

La funzione è derivabile due volte: si ha $f'(x) = 4x^3$, e dunque si annulla solo per $\overline{x} = 0$.

Ma se in questo punto calcoliamo la derivata seconda otteniamo

$$f''(x) = 12x^2 \Rightarrow f''(0) = 0.$$

Quindi non possiamo concludere niente sulla natura del punto $\overline{x}=0$. Se invece studiamo il segno della derivata prima:

$$4x^3 \ge 0 \implies x \ge 0$$

e quindi in 0 la derivata passa da negativa a positiva:

Un esempio tipico è quello della funzione $f:[-1;1] o \mathbb{R}$ definita da

$$f(x)=x^4.$$

La funzione è derivabile due volte: si ha $f'(x) = 4x^3$, e dunque si annulla solo per $\overline{x} = 0$.

Ma se in questo punto calcoliamo la derivata seconda otteniamo

$$f''(x) = 12x^2 \Rightarrow f''(0) = 0.$$

Quindi non possiamo concludere niente sulla natura del punto $\overline{x}=0$. Se invece studiamo il segno della derivata prima:

$$4x^3 \ge 0 \implies x \ge 0$$

e quindi in 0 la derivata passa da negativa a positiva:

$$\overline{x} = 0$$
 è un punto di minimo.

Riprendiamo un attimo l'esempio precedente: la funzione $f(x) = x^4$ sull'intervallo [-1;1].

Riprendiamo un attimo l'esempio precedente: la funzione $f(x) = x^4$ sull'intervallo [-1; 1].

Abbiamo trovato un solo punto in cui la derivata si annulla: $\overline{x}=0$, e abbiamo scoperto che tale punto è un minimo.

Riprendiamo un attimo l'esempio precedente: la funzione $f(x) = x^4$ sull'intervallo [-1; 1].

Abbiamo trovato un solo punto in cui la derivata si annulla: $\overline{x}=0$, e abbiamo scoperto che tale punto è un minimo.

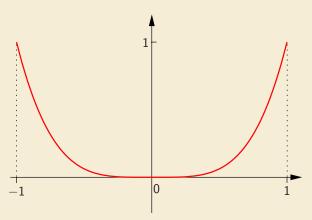
Ma ora ci poniamo una domanda: visto che in questo caso si può applicare il Teorema di Weierstrass, che ci garantisce l'esistenza del minimo e del massimo,

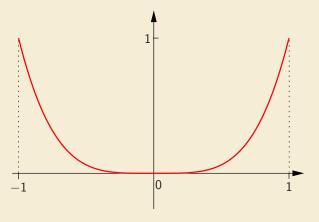
Riprendiamo un attimo l'esempio precedente: la funzione $f(x) = x^4$ sull'intervallo [-1; 1].

Abbiamo trovato un solo punto in cui la derivata si annulla: $\overline{x} = 0$, e abbiamo scoperto che tale punto è un minimo.

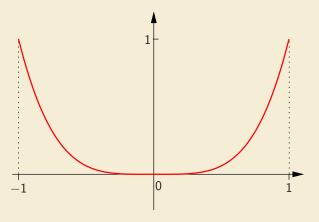
Ma ora ci poniamo una domanda: visto che in questo caso si può applicare il Teorema di Weierstrass, che ci garantisce l'esistenza del minimo e del massimo,

dove è finito il massimo?

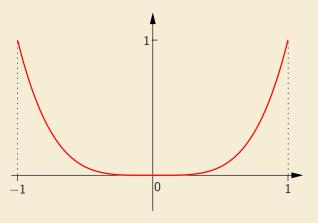




Ci accorgiamo subito che il massimo si trova sugli estremi dell'intervallo:



Ci accorgiamo subito che il massimo si trova sugli estremi dell'intervallo: ci sono **due** punti di massimo: x=-1 e x=1.



Ci accorgiamo subito che il massimo si trova sugli estremi dell'intervallo: ci sono **due** punti di massimo: x=-1 e x=1.

Ma in questi punti la derivata prima non è nulla.

Infatti, il metodo della derivata prima ci permette di individuare i cosiddetti massimi e minimi **relativi**, ovvero quei punti che sono massimi e minimi soltanto localmente, rispetto a un piccolo intervallo che li contiene.

Infatti, il metodo della derivata prima ci permette di individuare i cosiddetti massimi e minimi **relativi**, ovvero quei punti che sono massimi e minimi soltanto localmente, rispetto a un piccolo intervallo che li contiene. Ma anche gli estremi dell'intervallo devono essere analizzati per trovare i massimi e minimi **assoluti**, cioè quei punti in cui la funzione assume il valore più grande e quello più piccolo rispetto a **tutti** gli altri punti. Quindi il metodo per trovare i massimi e minimi assoluti consiste nel:

 cercare i massimi e minimi relativi (con la derivata prima, come abbiamo visto)

- cercare i massimi e minimi relativi (con la derivata prima, come abbiamo visto)
- valutare la funzione in tutti gli estremi relativi e anche negli estremi dell'intervallo

- cercare i massimi e minimi relativi (con la derivata prima, come abbiamo visto)
- valutare la funzione in tutti gli estremi relativi e anche negli estremi dell'intervallo
- tra tutti i valori ottenuti (che comunque saranno pochi) individuare il più grande e il più piccolo

- cercare i massimi e minimi relativi (con la derivata prima, come abbiamo visto)
- valutare la funzione in tutti gli estremi relativi e anche negli estremi dell'intervallo
- tra tutti i valori ottenuti (che comunque saranno pochi) individuare il più grande e il più piccolo
- i punti corrispondenti saranno i massimi e minimi assoluti.

Come esercizio, calcoliamo i massimi e minimi assoluti della funzione

$$f(x) = e^x \operatorname{sen} x$$
 sull'intervallo [0; 3].

Come esercizio, calcoliamo i massimi e minimi assoluti della funzione

$$f(x) = e^x \operatorname{sen} x$$
 sull'intervallo [0; 3].

Si ha
$$f'(x) = e^x \operatorname{sen} x + e^x \cos x = e^x (\operatorname{sen} x + \cos x).$$

Come esercizio, calcoliamo i massimi e minimi assoluti della funzione

$$f(x) = e^x \operatorname{sen} x$$
 sull'intervallo [0; 3].

Si ha $f'(x) = e^x \operatorname{sen} x + e^x \cos x = e^x (\operatorname{sen} x + \cos x)$. Poiché l'esponenziale è sempre positiva, studiamo

$$\operatorname{sen} x + \cos x \ge 0 \quad \Rightarrow \quad 0 \le x \le \frac{3}{4}\pi \vee \frac{7}{4}\pi \le x \le 2\pi.$$

Come esercizio, calcoliamo i massimi e minimi assoluti della funzione

$$f(x) = e^x \operatorname{sen} x$$
 sull'intervallo [0; 3].

Si ha $f'(x) = e^x \operatorname{sen} x + e^x \cos x = e^x (\operatorname{sen} x + \cos x)$. Poiché l'esponenziale è sempre positiva, studiamo

2 7

$$\operatorname{sen} x + \cos x \ge 0 \quad \Rightarrow \quad 0 \le x \le \frac{3}{4}\pi \vee \frac{7}{4}\pi \le x \le 2\pi.$$

Quindi in $x=\frac{3}{4}\pi$ abbiamo un punto di massimo relativo e in $x=\frac{7}{4}\pi$ un punto di minimo relativo.

Come esercizio, calcoliamo i massimi e minimi assoluti della funzione

$$f(x) = e^x \operatorname{sen} x$$
 sull'intervallo [0; 3].

Si ha $f'(x) = e^x \operatorname{sen} x + e^x \cos x = e^x (\operatorname{sen} x + \cos x).$

Poiché l'esponenziale è sempre positiva, studiamo

$$\operatorname{sen} x + \cos x \ge 0 \quad \Rightarrow \quad 0 \le x \le \frac{3}{4}\pi \lor \frac{7}{4}\pi \le x \le 2\pi.$$

Quindi in $x=\frac{3}{4}\pi$ abbiamo un punto di massimo relativo e in $x=\frac{7}{4}\pi$ un punto di minimo relativo.

Però $x = \frac{7}{4}\pi$ non è accettabile perché cade all'esterno dell'intervallo di studio [0; 3].

Come esercizio, calcoliamo i massimi e minimi assoluti della funzione

$$f(x) = e^x \operatorname{sen} x$$
 sull'intervallo [0; 3].

Si ha $f'(x) = e^x \operatorname{sen} x + e^x \cos x = e^x (\operatorname{sen} x + \cos x).$

Poiché l'esponenziale è sempre positiva, studiamo

$$\operatorname{sen} x + \cos x \ge 0 \quad \Rightarrow \quad 0 \le x \le \frac{3}{4}\pi \vee \frac{7}{4}\pi \le x \le 2\pi.$$

Quindi in $x=\frac{3}{4}\pi$ abbiamo un punto di massimo relativo e in $x=\frac{7}{4}\pi$ un punto di minimo relativo.

Però $x = \frac{7}{4}\pi$ non è accettabile perché cade all'esterno dell'intervallo di studio [0; 3].

Nel punto di massimo relativo $x = \frac{3}{4}\pi$ abbiamo poi

$$f\left(\frac{3}{4}\pi\right) = e^{\frac{3}{4}\pi} \frac{\sqrt{2}}{2} \simeq 7.46$$

$$f(0) = 0$$
, $f(3) = e^3 \operatorname{sen}(3) \simeq 2.83$

$$f(0) = 0$$
, $f(3) = e^3 \operatorname{sen}(3) \simeq 2.83$

Confrontando i tre valori ottenuti, troviamo che il minimo assoluto si trova in x=0 e vale 0, mentre il massimo assoluto si trova in $x=\frac{3}{4}\pi$ e vale circa 7.46

$$f(0) = 0$$
, $f(3) = e^3 \operatorname{sen}(3) \simeq 2.83$

Confrontando i tre valori ottenuti, troviamo che il minimo assoluto si trova in x=0 e vale 0, mentre il massimo assoluto si trova in $x=\frac{3}{4}\pi$ e vale circa 7.46

Osservazione

Nel cercare i massimi e minimi relativi, possiamo limitarci a risolvere l'equazione f'(x) = 0, senza bisogno di risolvere la disequazione.

$$f(0) = 0$$
, $f(3) = e^3 \operatorname{sen}(3) \simeq 2.83$

Confrontando i tre valori ottenuti, troviamo che il minimo assoluto si trova in x=0 e vale 0, mentre il massimo assoluto si trova in $x=\frac{3}{4}\pi$ e vale circa 7.46

Osservazione

Nel cercare i massimi e minimi relativi, possiamo limitarci a risolvere l'equazione f'(x) = 0, senza bisogno di risolvere la disequazione. I massimi e minimi assoluti si avranno comunque dal confronto dei valori della funzione in tutti i punti trovati e negli estremi dell'intervallo.

Applicazioni: problemi di ottimizzazione

Spesso la parte difficile di un problema di massimo e minimo è quella di capire quale sia la funzione e l'intervallo su cui lavorare. In molti problemi, infatti, bisogna usare le nozioni della Geometria per costruire la funzione da ottimizzare.

Applicazioni: problemi di ottimizzazione

Spesso la parte difficile di un problema di massimo e minimo è quella di capire quale sia la funzione e l'intervallo su cui lavorare. In molti problemi, infatti, bisogna usare le nozioni della Geometria per costruire la funzione da ottimizzare.

Quindi per poter risolvere un problema di ottimizzazione bisogna ricorre a tutti gli strumenti matematici a disposizione appresi negli anni, dal Teorema di Euclide alla Geometria Analitica, dai Prodotti notevoli alla Trigonometria.

Spesso la parte difficile di un problema di massimo e minimo è quella di capire quale sia la funzione e l'intervallo su cui lavorare. In molti problemi, infatti, bisogna usare le nozioni della Geometria per costruire la funzione da ottimizzare.

Quindi per poter risolvere un problema di ottimizzazione bisogna ricorre a tutti gli strumenti matematici a disposizione appresi negli anni, dal Teorema di Euclide alla Geometria Analitica, dai Prodotti notevoli alla Trigonometria.

Una volta costruita la funzione e l'intervallo su cui lavorare, si procede come negli esempi precedenti.

Spesso la parte difficile di un problema di massimo e minimo è quella di capire quale sia la funzione e l'intervallo su cui lavorare. In molti problemi, infatti, bisogna usare le nozioni della Geometria per costruire la funzione da ottimizzare.

Quindi per poter risolvere un problema di ottimizzazione bisogna ricorre a tutti gli strumenti matematici a disposizione appresi negli anni, dal Teorema di Euclide alla Geometria Analitica, dai Prodotti notevoli alla Trigonometria.

Una volta costruita la funzione e l'intervallo su cui lavorare, si procede come negli esempi precedenti.

Ricordiamo brevemente una distinzione:

Spesso la parte difficile di un problema di massimo e minimo è quella di capire quale sia la funzione e l'intervallo su cui lavorare. In molti problemi, infatti, bisogna usare le nozioni della Geometria per costruire la funzione da ottimizzare.

Quindi per poter risolvere un problema di ottimizzazione bisogna ricorre a tutti gli strumenti matematici a disposizione appresi negli anni, dal Teorema di Euclide alla Geometria Analitica, dai Prodotti notevoli alla Trigonometria.

Una volta costruita la funzione e l'intervallo su cui lavorare, si procede come negli esempi precedenti.

Ricordiamo brevemente una distinzione:

• i **punti di massimo o di minimo** sono i valori della *x* che massimizzano o minimizzano la funzione

Spesso la parte difficile di un problema di massimo e minimo è quella di capire quale sia la funzione e l'intervallo su cui lavorare. In molti problemi, infatti, bisogna usare le nozioni della Geometria per costruire la funzione da ottimizzare.

Quindi per poter risolvere un problema di ottimizzazione bisogna ricorre a tutti gli strumenti matematici a disposizione appresi negli anni, dal Teorema di Euclide alla Geometria Analitica, dai Prodotti notevoli alla Trigonometria.

Una volta costruita la funzione e l'intervallo su cui lavorare, si procede come negli esempi precedenti.

Ricordiamo brevemente una distinzione:

- i **punti di massimo o di minimo** sono i valori della *x* che massimizzano o minimizzano la funzione
- i valori di massimo o di minimo sono i valori estremi della funzione (cioè le y corrispondenti)

Ma partiamo da semplici problemi numerici, come il seguente:

Ma partiamo da semplici problemi numerici, come il seguente:

Trovare due numeri reali positivi la cui somma sia 3 e tali che massimizzino il prodotto di uno per il quadrato dell'altro.

Ma partiamo da semplici problemi numerici, come il seguente:

Trovare due numeri reali positivi la cui somma sia 3 e tali che massimizzino il prodotto di uno per il quadrato dell'altro.

Per risolverlo, chiamiamo x uno dei due numeri.

Ma partiamo da semplici problemi numerici, come il seguente:

Trovare due numeri reali positivi la cui somma sia 3 e tali che massimizzino il prodotto di uno per il quadrato dell'altro.

Per risolverlo, chiamiamo x uno dei due numeri. Poiché la somma deve essere 3, l'altro numero è 3-x.

Ma partiamo da semplici problemi numerici, come il seguente:

Trovare due numeri reali positivi la cui somma sia 3 e tali che massimizzino il prodotto di uno per il quadrato dell'altro.

Per risolverlo, chiamiamo x uno dei due numeri. Poiché la somma deve essere 3, l'altro numero è 3-x. Inoltre, dovendo lavorare con numeri positivi, dovrà essere $x \geq 0$ e $3-x \geq 0$, da cui $x \in [0;3]$.

Ma partiamo da semplici problemi numerici, come il seguente:

Trovare due numeri reali positivi la cui somma sia 3 e tali che massimizzino il prodotto di uno per il quadrato dell'altro.

Per risolverlo, chiamiamo x uno dei due numeri. Poiché la somma deve essere 3, l'altro numero è 3-x. Inoltre, dovendo lavorare con numeri positivi, dovrà essere $x \geq 0$ e $3-x \geq 0$, da cui $x \in [0;3]$.

La funzione da massimizzare si costruisce immediatamente:

$$f(x) = x^2(3-x)$$
 sull'intervallo [0; 3]

Ora procediamo derivando la funzione $f(x) = x^2(3-x)$:

$$f'(x) = 2x(3-x) - x^2 = 6x - 3x^2 = 0 \Rightarrow x = 0, x = 2$$

Ora procediamo derivando la funzione $f(x) = x^2(3-x)$:

$$f'(x) = 2x(3-x) - x^2 = 6x - 3x^2 = 0$$
 \Rightarrow $x = 0, x = 2$

Calcolando i valori sui punti a derivata nulla e sugli estremi dell'intervallo, abbiamo

$$f(0) = 0$$
, $f(2) = 4$, $f(3) = 0$

quindi il massimo assoluto si ha per x = 2.

Ora procediamo derivando la funzione $f(x) = x^2(3-x)$:

$$f'(x) = 2x(3-x) - x^2 = 6x - 3x^2 = 0$$
 \Rightarrow $x = 0, x = 2$

Calcolando i valori sui punti a derivata nulla e sugli estremi dell'intervallo, abbiamo

$$f(0) = 0$$
, $f(2) = 4$, $f(3) = 0$

quindi il massimo assoluto si ha per x = 2.

I due numeri cercati sono 1 e 2.

Vediamo un altro esempio:

Trovare il punto sulla curva $y = x^2 + 1$ più vicino al punto (5;0).

Vediamo un altro esempio:

Trovare il punto sulla curva $y = x^2 + 1$ più vicino al punto (5; 0).

La locuzione "più vicino" ci suggerisce che si tratta di un problema di minimo, e che la funzione da minimizzare sia la distanza.

Vediamo un altro esempio:

Trovare il punto sulla curva $y = x^2 + 1$ più vicino al punto (5; 0).

La locuzione "più vicino" ci suggerisce che si tratta di un problema di minimo, e che la funzione da minimizzare sia la distanza. Infatti, considerando il generico punto sulla curva di coordinate (x: $x^2 + 1$)

Infatti, considerando il generico punto sulla curva di coordinate (x; $x^2 + 1$), mediante la Geometria analitica troviamone la distanza da (5; 0):

$$d(x) = \sqrt{(x-5)^2 + (x^2+1)^2}$$

Vediamo un altro esempio:

Trovare il punto sulla curva $y = x^2 + 1$ più vicino al punto (5; 0).

La locuzione "più vicino" ci suggerisce che si tratta di un problema di minimo, e che la funzione da minimizzare sia la distanza. Infatti, considerando il generico punto sulla curva di coordinate $(x; x^2 + 1)$,

mediante la Geometria analitica troviamone la distanza da (5;0):
$$d(x) = \sqrt{(x-5)^2 + (x^2+1)^2}$$

Ora vogliamo minimizzare questa funzione per $x \in \mathbb{R}$. Stavolta non abbiamo un intervallo chiuso e limitato, quindi il Teorema di Weierstrass non ci garantisce l'esistenza del minimo. Ma vedremo che il problema ha comunque soluzione.

Quindi vogliamo minimizzare

$$d^2(x) = (x-5)^2 + (x^2+1)^2$$
 su \mathbb{R} .

Quindi vogliamo minimizzare

$$d^2(x) = (x-5)^2 + (x^2+1)^2$$
 su \mathbb{R} .

Derivando otteniamo

$$d^{2}(x) = 2(x-5) + 2(x^2+1)2x = 4x^3 + 6x - 10.$$

Quindi vogliamo minimizzare

$$d^2(x) = (x-5)^2 + (x^2+1)^2$$
 su \mathbb{R} .

Derivando otteniamo

$$d^{2'}(x) = 2(x-5) + 2(x^2+1)2x = 4x^3 + 6x - 10.$$

Quindi, semplificando un fattore 2, dobbiamo risolvere l'equazione

$$2x^3 + 3x - 5 = 0$$

che è di terzo grado.

Quindi vogliamo minimizzare

$$d^2(x) = (x-5)^2 + (x^2+1)^2$$
 su \mathbb{R} .

Derivando otteniamo

$$d^{2'}(x) = 2(x-5) + 2(x^2+1)2x = 4x^3 + 6x - 10.$$

Quindi, semplificando un fattore 2, dobbiamo risolvere l'equazione

$$2x^3 + 3x - 5 = 0$$

che è di terzo grado.

Si vede subito che x=1 è una soluzione, quindi con l'algoritmo di Ruffini scomponiamo il polinomio come

$$(x-1)(2x^2+2x+5)=0$$

Quindi vogliamo minimizzare

$$d^2(x) = (x-5)^2 + (x^2+1)^2$$
 su \mathbb{R} .

Derivando otteniamo

$$d^{2'}(x) = 2(x-5) + 2(x^2+1)2x = 4x^3 + 6x - 10.$$

Quindi, semplificando un fattore 2, dobbiamo risolvere l'equazione

$$2x^3 + 3x - 5 = 0$$

che è di terzo grado.

Si vede subito che x=1 è una soluzione, quindi con l'algoritmo di Ruffini scomponiamo il polinomio come

$$(x-1)(2x^2+2x+5)=0$$

Poiché $2x^2 + 2x + 5$ ha il discriminante negativo, l'unico punto in cui la derivata si annulla è x=1.

Alessandro Musesti - ©2011–2012 Nuova Secondaria EDITRICE LA SCUOLA

$$\lim_{x \to \pm \infty} (x - 5)^2 + (x^2 + 1)^2 = +\infty.$$

$$\lim_{x \to +\infty} (x-5)^2 + (x^2+1)^2 = +\infty.$$

Quindi la funzione non ha punti di massimo e ha un unico punto di minimo in x=1.

$$\lim_{x \to \pm \infty} (x - 5)^2 + (x^2 + 1)^2 = +\infty.$$

Quindi la funzione non ha punti di massimo e ha un unico punto di minimo in x=1.

Il punto del grafico di $y = x^2 + 1$ di minima distanza da (5;0) quindi è

$$P = (1; 2)$$

$$\lim_{x \to \pm \infty} (x - 5)^2 + (x^2 + 1)^2 = +\infty.$$

Quindi la funzione non ha punti di massimo e ha un unico punto di minimo in x=1.

Il punto del grafico di $y=x^2+1$ di minima distanza da (5;0) quindi è

$$P = (1; 2)$$

Se vogliamo sapere quanto vale la distanza minima, basta sostituire il punto nella funzione distanza calcolata prima (attenzione: non bisogna usare la distanza al quadrato, stavolta).

$$\lim_{x \to +\infty} (x-5)^2 + (x^2+1)^2 = +\infty.$$

Quindi la funzione non ha punti di massimo e ha un unico punto di minimo in x=1.

Il punto del grafico di $y=x^2+1$ di minima distanza da (5;0) quindi è

$$P = (1; 2)$$

Se vogliamo sapere quanto vale la distanza minima, basta sostituire il punto nella funzione distanza calcolata prima (attenzione: non bisogna usare la distanza al quadrato, stavolta).

Viene
$$d_{\min} = d(1) = \sqrt{20} = 2\sqrt{5}$$
.

Lattine di bibite

Proviamo a cercare un'applicazione "concreta":

Un'azienda produce lattine per bibite di forma cilindrica, e vuole costruire lattine più capienti senza aumentare i costi di produzione. Come deve fare?

Lattine di bibite

Proviamo a cercare un'applicazione "concreta":

Un'azienda produce lattine per bibite di forma cilindrica, e vuole costruire lattine più capienti senza aumentare i costi di produzione. Come deve fare?

Visto che i costi di produzione sono legati alla quantità di materiale usato, e questo dipende dalla superficie totale del cilindro, bisogna trovare le proporzioni da dare al cilindro affinché la lattina possa contenere più liquido possibile a parità di superficie totale.

Lattine di bibite

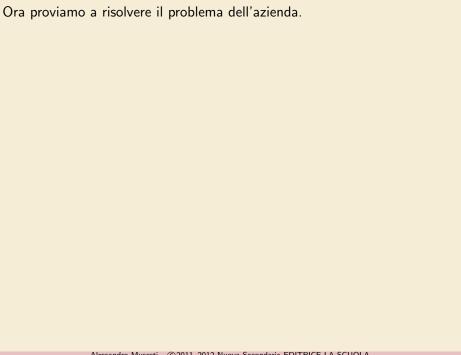
Proviamo a cercare un'applicazione "concreta":

Un'azienda produce lattine per bibite di forma cilindrica, e vuole costruire lattine più capienti senza aumentare i costi di produzione. Come deve fare?

Visto che i costi di produzione sono legati alla quantità di materiale usato, e questo dipende dalla superficie totale del cilindro, bisogna trovare le proporzioni da dare al cilindro affinché la lattina possa contenere più liquido possibile a parità di superficie totale.

Quindi si ha a che fare con un problema geometrico, che si può riformulare come

Fra tutti i cilindri della stessa superficie totale, qual è quello di volume massimo?



Ora proviamo a risolvere il problema dell'azienda.

Un cilindro dipende da due parametri: il raggio r della base e l'altezza h. Essendo fissa la superficie totale, si ha

$$2\pi r^2 + 2\pi rh = S = \text{costante}$$

e quindi possiamo ricavare l'altezza in funzione del raggio di base e della costante S:

$$h=\frac{S-2\pi r^2}{2\pi r}.$$

Ora proviamo a risolvere il problema dell'azienda.

Un cilindro dipende da due parametri: il raggio r della base e l'altezza h. Essendo fissa la superficie totale, si ha

$$2\pi r^2 + 2\pi rh = S = \text{costante}$$

e quindi possiamo ricavare l'altezza in funzione del raggio di base e della costante S:

$$h = \frac{S - 2\pi r^2}{2\pi r}.$$

Ora esprimiamo il volume del cilindro in funzione di r:

$$V(r) = \pi r^2 h = \pi r^2 \frac{S - 2\pi r^2}{2\pi r} = \frac{r}{2} (S - 2\pi r^2).$$

Ora proviamo a risolvere il problema dell'azienda.

Un cilindro dipende da due parametri: il raggio r della base e l'altezza h. Essendo fissa la superficie totale, si ha

$$2\pi r^2 + 2\pi rh = S = \text{costante}$$

e quindi possiamo ricavare l'altezza in funzione del raggio di base e della costante S:

$$h=\frac{S-2\pi r^2}{2\pi r}.$$

Ora esprimiamo il volume del cilindro in funzione di r:

$$V(r) = \pi r^2 h = \pi r^2 \frac{S - 2\pi r^2}{2\pi r} = \frac{r}{2} (S - 2\pi r^2).$$

Inoltre, poiché deve essere $r, h \ge 0$, avremo anche

$$S - 2\pi r^2 \ge 0 \quad \Rightarrow \quad r \le \sqrt{\frac{S}{2\pi}}.$$

$$V(r) = \frac{r}{2}(S - 2\pi r^2)$$
 sull'intervallo $\left[0; \sqrt{\frac{S}{2\pi}}\right]$.

$$V(r) = \frac{r}{2}(S - 2\pi r^2)$$
 sull'intervallo $\left[0; \sqrt{\frac{S}{2\pi}}\right]$.

Abbiamo

$$V'(r) = \frac{S}{2} - 3\pi r^2 = 0 \quad \Rightarrow \quad r = \sqrt{\frac{S}{6\pi}}.$$

$$V(r) = \frac{r}{2}(S - 2\pi r^2)$$
 sull'intervallo $\left[0; \sqrt{\frac{S}{2\pi}}\right]$.

Abbiamo

$$V'(r) = \frac{S}{2} - 3\pi r^2 = 0 \quad \Rightarrow \quad r = \sqrt{\frac{S}{6\pi}}.$$

Ora valutiamo V(r) sul punto trovato e sugli estremi dell'intervallo:

$$V(0) = V\left(\sqrt{\frac{S}{2\pi}}\right) = 0, \quad V\left(\sqrt{\frac{S}{6\pi}}\right) = \frac{S}{3}\sqrt{\frac{S}{6\pi}} > 0.$$

$$V(r) = \frac{r}{2}(S - 2\pi r^2)$$
 sull'intervallo $\left[0; \sqrt{\frac{S}{2\pi}}\right]$.

Abbiamo

$$V'(r) = \frac{S}{2} - 3\pi r^2 = 0 \quad \Rightarrow \quad r = \sqrt{\frac{S}{6\pi}}.$$

Ora valutiamo V(r) sul punto trovato e sugli estremi dell'intervallo:

$$V(0)=V\Big(\sqrt{\frac{S}{2\pi}}\Big)=0, \quad V\Big(\sqrt{\frac{S}{6\pi}}\Big)=\frac{S}{3}\sqrt{\frac{S}{6\pi}}>0.$$

Quindi $r = \sqrt{\frac{S}{6\pi}}$ è il raggio di base che dà il volume massimo.

$$V(r) = \frac{r}{2}(S - 2\pi r^2)$$
 sull'intervallo $\left[0; \sqrt{\frac{S}{2\pi}}\right]$.

Abbiamo

$$V'(r) = \frac{S}{2} - 3\pi r^2 = 0 \quad \Rightarrow \quad r = \sqrt{\frac{S}{6\pi}}.$$

Ora valutiamo V(r) sul punto trovato e sugli estremi dell'intervallo:

$$V(0)=V\Big(\sqrt{\frac{S}{2\pi}}\Big)=0, \quad V\Big(\sqrt{\frac{S}{6\pi}}\Big)=\frac{S}{3}\sqrt{\frac{S}{6\pi}}>0.$$

Quindi $r=\sqrt{\frac{S}{6\pi}}$ è il raggio di base che dà il volume massimo. L'altezza corrispondente viene

$$h = \frac{S - 2\pi r^2}{2\pi r} =$$

$$V(r) = \frac{r}{2}(S - 2\pi r^2)$$
 sull'intervallo $\left[0; \sqrt{\frac{S}{2\pi}}\right]$.

Abbiamo

$$V'(r) = \frac{S}{2} - 3\pi r^2 = 0 \quad \Rightarrow \quad r = \sqrt{\frac{S}{6\pi}}.$$

Ora valutiamo V(r) sul punto trovato e sugli estremi dell'intervallo:

$$V(0)=V\Big(\sqrt{\frac{S}{2\pi}}\Big)=0, \quad V\Big(\sqrt{\frac{S}{6\pi}}\Big)=\frac{S}{3}\sqrt{\frac{S}{6\pi}}>0.$$

Quindi $r=\sqrt{\frac{S}{6\pi}}$ è il raggio di base che dà il volume massimo. L'altezza corrispondente viene

$$h = \frac{S - 2\pi r^2}{2\pi r} = \frac{2}{3} S \frac{1}{2\pi} \sqrt{\frac{6\pi}{S}}$$

$$V(r) = \frac{r}{2}(S - 2\pi r^2)$$
 sull'intervallo $\left[0; \sqrt{\frac{S}{2\pi}}\right]$.

Abbiamo

$$V'(r) = \frac{S}{2} - 3\pi r^2 = 0 \quad \Rightarrow \quad r = \sqrt{\frac{S}{6\pi}}.$$

Ora valutiamo V(r) sul punto trovato e sugli estremi dell'intervallo:

$$V(0)=V\Big(\sqrt{rac{S}{2\pi}}\Big)=0, \quad V\Big(\sqrt{rac{S}{6\pi}}\Big)=rac{S}{3}\sqrt{rac{S}{6\pi}}>0.$$

Quindi $r=\sqrt{\frac{S}{6\pi}}$ è il raggio di base che dà il volume massimo. L'altezza corrispondente viene

$$h = \frac{S - 2\pi r^2}{2\pi r} = \frac{2}{3} S \frac{1}{2\pi} \sqrt{\frac{6\pi}{S}} = 2\sqrt{\frac{S}{6\pi}} = 2r_{\text{max}}.$$

La proporzione del cilindro deve essere: altezza doppia del raggio di base.

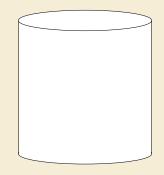
La proporzione del cilindro deve essere: altezza doppia del raggio di base. Questo si chiama **cilindro equilatero**. La proporzione del cilindro deve essere: altezza doppia del raggio di base.
Questo si chiama **cilindro equilatero**.
Quindi il cilindro equilatero è quello che tra tutti i cilindri massimizza il volume a parità di

superficie laterale.

La proporzione del cilindro deve essere: altezza doppia del raggio di base.

Questo si chiama cilindro equilatero.

Quindi il cilindro equilatero è quello che tra tutti i cilindri massimizza il volume a parità di superficie laterale.



Resta da capire perché invece l'usuale forma della lattina da bibita è ben diversa da quella di un cilindro equilatero. Evidentemente, nel problema dell'azienda entrano in gioco anche altri fattori (estetico, pratico, costruttivo, . . .) di cui non abbiamo tenuto conto in questa semplice trattazione.