# Dall'atomo alle molecole: i legami chimici

#### **Ersilia Conte**

## Legame chimico (L.Pauling)

Tra due atomi o gruppi di atomi esiste <u>un</u>
 *legame chimico* se le forze agenti tra essi
 danno luogo alla formazione di un
 aggregato di atomi sufficientemente
 stabile da consentire di svelarne
 l'esistenza.

## Aspetti storici approfondimento

La prima teoria di legame chimico risale a J.J.Berzelius che agli inizi del XIXsec. enunciò "la teoria dualistica" o "teoria elettrochimica":

- per cui ogni composto è costituito da una parte elettricamente positiva e una parte elettricamente negativa che si attraggono con più o meno forza generando un legame più o meno stabile.
- Questa teoria, nel XXsec., con lo sviluppo della chimica organica manifestò pesanti insufficienze.

## Energia di legame

L'energia di legame è misurata <u>dall'energia</u> <u>necessaria per rompere il legame stesso</u>, quindi è determinabile sperimentalmente e si esprime in :

```
Kcal/mol .....1Kcal = 4,184 \cdot 10^3Joule eV/mol .....1eV = 23,06Kcal
```

- 1. L'ordine di grandezza delle energie dei comuni legami chimici va da poche Kcal a qualche centinaio di Kcal/mol.
- 2. Se un atomo forma più legami con atomi uguali, come H<sub>2</sub>O, ciascun di tali legami ha la stessa energia.

#### elettronVolt APPROFONDIMENTO

 Energia acquistata da 1elettrone che si muove sotto la differenza di potenziale di 1Volt

$$1eV = 1,602 \cdot 10^{-12} erg$$

Per 1mole di elettroni

1eV = 1,602\*10<sup>-12</sup>erg x 6,022 \*10<sup>23</sup> = 9,649\*10<sup>11</sup>erg = 9,649\*10<sup>4</sup>Joule = 23,06Kcal/mol

## Regola dell'ottetto (Kossel)

L'aggruppamento di 8 elettroni

ns<sup>2</sup>np<sub>x</sub><sup>2</sup>np<sub>y</sub><sup>2</sup>np<sub>z</sub><sup>2</sup>

che prende il nome di ottetto, è una configurazione di *grande stabilità*, quindi di basso *contenuto energetico*.

Gli atomi tendono a realizzare tale configurazione elettronica esterna, cedendo o acquistando o mettendo in comune elettroni con altri atomi.

## Regola dell'ottetto CONTINUA

 Questa regola viene meno nei numerosi casi in cui l'atomo impegna anche gli orbitali d oltre che quelli s e p per formare legami.

PCl<sub>5</sub> l'atomo di P ha 10 elettroni esterni SF<sub>6</sub> l'atomo di S ha 12 elettroni esterni

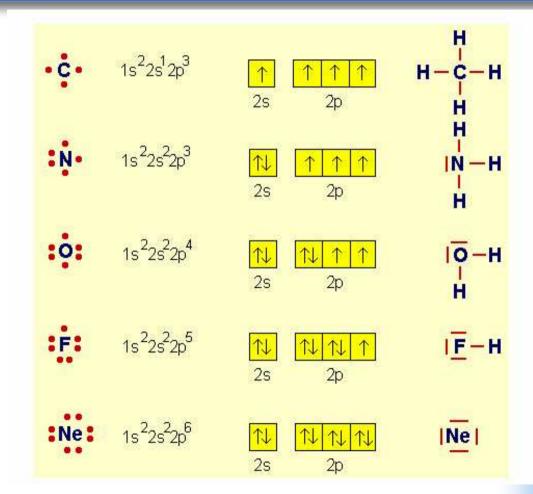
Con le sue numerose eccezioni la regola dell'ottetto resta utile nello studio elemenatare dei legami chimici.

#### Potenziale di ionizzazione

- Il Potenziale di ionizzazione di un dato e<sup>-</sup> di un atomo, esprime il valore dell'energia necessaria per togliere quell'e<sup>-</sup> dall'atomo isolato e portarlo a distanza infinita, a stato di energia cinetica nulla.
- 1. E' riferito ad 1mole di e-,
- 2. È dato in eV/mol o Kcal/mol
- 3. Atomo isolato = atomo non legato ad altri atomi, ad es. un gas rarefatto.
- Se ad un atomo vengono sottratti, un primo, un secondo, un terzo...e<sup>-</sup>, si parla di energia di 1°, 2°, 3°...ionizzazione.
- I valori di potenziali crescono passando da un elettrone al successivo.

## Affinità per l'elettrone

- Alcuni atomi tendono ad acquistare 1 e dando ioni (anioni), più stabili di dell'atomo neutro da cui provengono:
- F = 1s<sup>2</sup>2s<sup>2</sup>2p<sub>x</sub><sup>2</sup>2p<sub>y</sub><sup>2</sup> 2p<sub>z</sub><sup>1</sup>, acquista facilmente 1e<sup>-</sup>, liberando 85,3Kcal/mol.
- L'energia liberata è tanto maggiore quanto maggiore è la tendenza dell'atomo ad acquistare l'e- e misura la sua affinità elettronica.
- Affinità elettronica = energia che una mole di atomi libera nell'acquisto di una mole di e


## Carattere metallico di un elemento APPROFONDIMENTO

 Trova una sua misura del Potenziale di ionizzazione: tanto maggiore è il suo valore (difficoltà a perdere e<sup>-</sup>) tanto maggiore è il suo carattere metallico.

### Rappresentazione degli atomi

Gli e- esterni i responsabili principali delle proprietà chimiche di un atomo e quindi della natura dei legami chimici che vengono a stabilirsi fra esso ed altri atomi.

Perciò si usa rappresentare gli atomi in modo da far subito emergere la configurazione più esterna.



## Formazione di legami chimici

La tendenza di 2 o più atomi a formare legami chimici esprime la tendenza a trovare per i loro e la configurazione con minor contenuto di energia: ciò si manifesta

- col mettere in comune e
- col passaggio di 1 o più e⁻ da un atomo all'altro

### Formazione di legami chimici

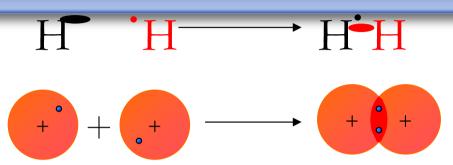
**Continua** 

Alla base della formazione di ogni legame chimico esistono sempre azioni elettriche, dovute:

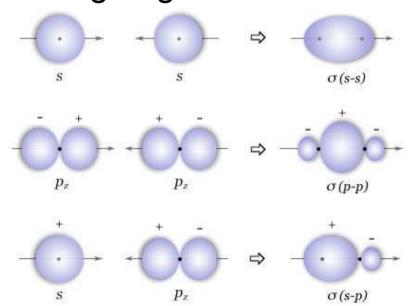
- Alle azioni attrattive fra ciascun nucleo (+) e l'atmosfera elettronica dell'altro nucleo (-)
- Alle azioni repulsive fra i nuclei di due atomi e fra le loro atmosfere elettroniche

I legami si manifestano

- fra atomi, uguali o diversi, a dare una molecola
- Fra molecole, uguali o diverse, a dare aggregati di molecole.


## Classificazione dei legami

- <u>Legami atomici</u> (omeopolare, covalente, dativo)
- <u>Legami elettrostatici</u> (ionico, dipolare, legame a idrogeno)
- Legame metallico

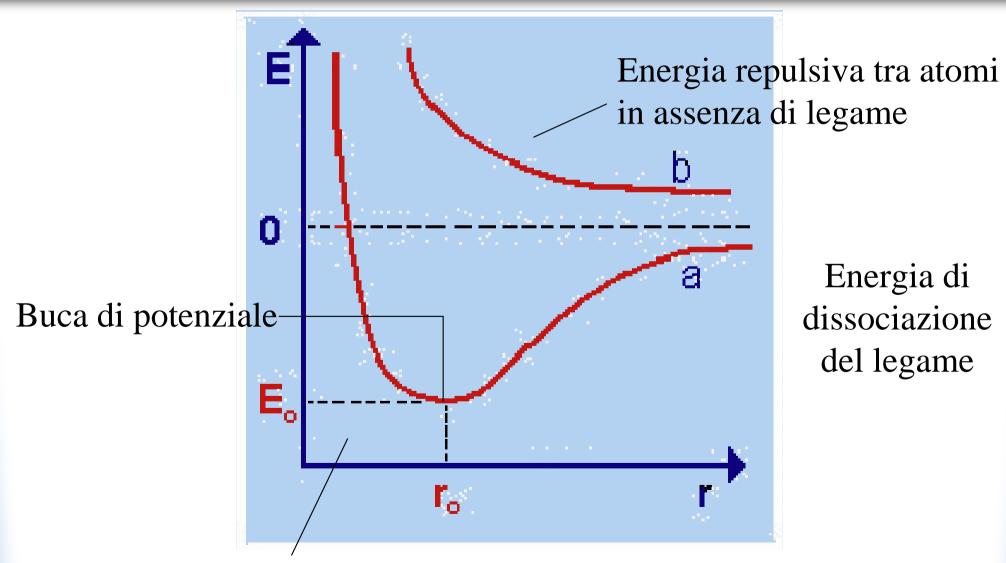

## Legami atomici: omopolari

- Ogni tipo di legame in cui esistono e<sup>-</sup> condivisi fra due atomi.
- Condividere una coppia elettronica, vuol dire formare un orbitale molecolare, che si estende ad ambedue i nuclei coinvolti.
- Il legame atomico esistente in una molecola costituita da atomi uguali è detto OMEOPOLARE, per indicare che non esistono polarità elettriche permanenti nella molecola.

#### Studiamo la formazione di una molecola di H<sub>2</sub>



Nella molecola **H-H** il legame che si forma è di tipo σ cioè l'orbitale molecolare che si forma è direzionato lungo l'asse congiungente i due nuclei.




Anche nel caso della molecola di  $\operatorname{Cl}_2$  si forma un legame di tipo  $\sigma \square$  fra orbitali p.  $\square \square \square$ 

Ogni volta che tra due atomi si forma un legame semplice, questo è di tipo  $\sigma$ .

© 2010-2011 Nuova Secondaria - EDITRICE LA SCUOLA

## Curve di energia potenziale (E) di un sistema biatomico in funzione della distanza interatomica r APPROFONDIMENTO



Distanza media di legame

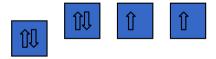
© 2010-2011 Nuova Secondaria - EDITRICE LA SCUOLA

## Legame covalente

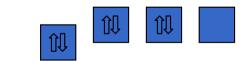
 Il legame atomico esistente in una molecola costituita da atomi diversi è detto COVALENTE, per indicare che esistono polarità elettriche permanenti nella molecola, dovute alla diversa elettronegatività dei due atomi. Tale differenza provoca un'addensamento di carica su uno dei due atomi.

## Legame covalente continua

Studiamo la molecola di HCl, il legame è costituito da due elettroni messi in comune, uno dall'H e l'altro dal Cl, con formazione dell'ottetto nella configurazione del Cl e completando l'orbitale s dell'H.



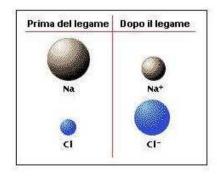

Poiché tra i due atomi vi è una differente capacità di attrarre Gli e- di legame, si ha la formazione di un dipolo

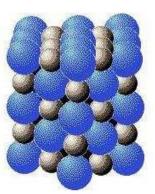

#### Legami atomici: dativi o di coordinazione

Gli e<sup>-</sup> vengono condivisi da due atomi ma uno dei due (datore) mette in comune il un doppietto elettronico con l'altro (accettore) che dispone di un orbitale vuoto di energia adatta o deve essere in grado di disporne, accoppiando in un unico orbitale due e<sup>-</sup> distribuiti in due orbitali.

Ciò avviene per l'atomo di O, che con un dispendio di 45 Kcal/mol libera un orbitale.




Stato fondamentale




Stato eccitato

#### Legami elettrostatici: legami ionici

- Tanto maggiore è la differenza di elettronegatività fra due atomi che formano il legame tanto più elevati sono il carattere ionico e la polarità del legame
- Se questa differenza è superiore a 1,9 avviene un trasferimento di elettroni da un atomo all'altro.
- L'atomo più elettronegativo diventa uno ione negativo, (non metallo) l'altro uno ione positivo (metallo).
- I composti ionici si formano spontaneamente, perché il passaggio di 1e- da un atomo all'altro è accompagnata da produzione di energia elettrostatica - processo esoenergetico.





## Elettronegatività APPROFONDIMENTO

## Tendenza di un atomo ad attrarre la coppia di elettroni di legame

Mulliken:  $\chi = k(E_I + A)$ 

La media tra la Energia di prima ionizzazione e la Affinità elettronica

E' una proprietà periodica

Tanto più sono alte queste energie, tanto maggiore sarà la "resistenza" di un atomo a perdere elettrone, ovvero la sua tendenza ad acquisirli.

Espressa in funzione di un indice arbitrario tra 0 e 4

#### Legami elettrostatici: legami dipolari

- Oltre al legame ionico si incontrano in chimica altri tipi di legami elettrostatici, dovuti a interazioni tra dipoli: legami di van der Waals o legami a Idrogeno
- sono interazioni di natura elettrostatica che si stabiliscono tra molecole della stessa specie, o di specie diverse.
- Le loro energie sono molto più basse rispetto a quelle dei legami forti, ma sono importanti nel determinare le proprietà fisiche dei composti.

#### Forze di van der Waals

sono interazioni di natura elettrostatica se ne distinguono tre tipi diversi secondo la natura delle molecole coinvolte.

1. L'interazione dipolo-dipolo avviene tra molecole polari:







2. L'interazione dipolo-dipolo indotto avviene tra molecole polari e molecole inizialmente apolari, che subiscono una separazione di carica per effetto induttivo:





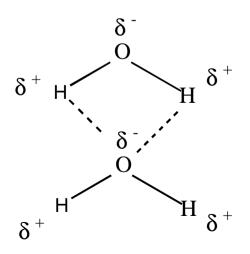




3. L'interazione dipolo istantaneo - dipolo indotto avviene tra molecole apolari: una risulta temporaneamente polarizzata per effetto del moto degli elettroni, l'altra diventa polare per induzione. Queste interazioni si chiamano anche *forze di London:* 







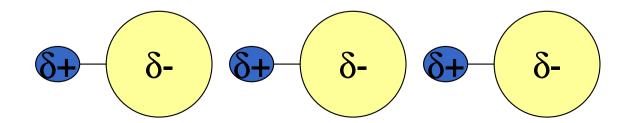



## Legame a Idrogeno

è caratteristico dell'acqua: l'atomo di ossigeno, parzialmente negativo, è in grado di legare i due atomi di idrogeno di un'altra molecola.

Il legame idrogeno spiega, per esempio, l'elevata temperatura di ebollizione dell'acqua rispetto a sostanze di struttura simile. Per passare allo stato vapore è infatti necessario rompere i legami idrogeno.

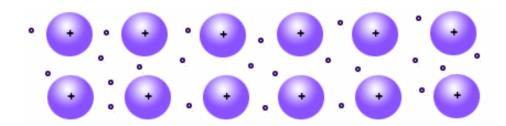



Il legame a idrogeno, a ponte di idrogeno, è un legame che si forma fra molecole che contengono un atomo di idrogeno legato ad un altro atomo più elettronegativo e di piccole dimensioni.

## Legame a Idrogeno APPROFONDIMENTO

## Legami a idrogeno nella molecola di fluoruro di idrogeno (FCI)

 L'attrazione elettrostatica si stabilisce fra l'atomo di idrogeno di una molecola e l'atomo di fluoro di un'altra molecola. Si formano così catene di molecole di fluoruro di idrogeno (o acido fluoridrico).


H-F....H-F....H-F



## Legame metallico

Nei metalli il legame è dovuto alla dislocazione di tutti gli e di valenza. In pratica gli ioni metallici occupano posizioni fisse all'interno del reticolo, mentre gli elettroni di valenza sono liberi di muoversi.

La mobilità della nube elettronica che avvolge i cationi spiega molte proprietà dei metalli come la conducibilità termica ed elettrica e la lavorabilità.

