Equazioni di secondo grado

Alfredo Marzocchi

Università Cattolica del Sacro Cuore Dipartimento di Matematica e Fisica "Niccolò Tartaglia" Via dei Musei, 41 – 25121 Brescia (Italy)

Parte I

percorso semplificato

- Richiami
- 2 Equazioni fattorizzabili
- Equazioni complete
- 4 Somma e prodotto di soluzioni

$$ax^2 + bx + c = 0$$

$$ax^2 + bx + c = 0$$

$$ax^2 + bx + c = 0$$

dove a, b, c sono numeri reali e $a \neq 0$. Quindi

• $x^2 + x - 1 = 0$ è un'equazione di secondo grado;

Somma e prodotto di soluzioni

$$ax^2 + bx + c = 0$$

- $x^2 + x 1 = 0$ è un'equazione di secondo grado;
- $-2x^2 + x = 0$ è un'equazione di secondo grado;

$$ax^2 + bx + c = 0$$

- $x^2 + x 1 = 0$ è un'equazione di secondo grado;
- $-2x^2 + x = 0$ è un'equazione di secondo grado;
- $x^2 + (\sqrt{2} 1)x + 1 = 0$ è un'equazione di secondo grado;

$$ax^2 + bx + c = 0$$

- $x^2 + x 1 = 0$ è un'equazione di secondo grado;
- $-2x^2 + x = 0$ è un'equazione di secondo grado;
- $x^2 + (\sqrt{2} 1)x + 1 = 0$ è un'equazione di secondo grado;
- 2x + 1 = 0 non è un'equazione di secondo grado;

$$ax^2 + bx + c = 0$$

- $x^2 + x 1 = 0$ è un'equazione di secondo grado;
- $-2x^2 + x = 0$ è un'equazione di secondo grado;
- $x^2 + (\sqrt{2} 1)x + 1 = 0$ è un'equazione di secondo grado;
- 2x + 1 = 0 non è un'equazione di secondo grado;
- $x^3 + x^2 = 1$ non è un'equazione di secondo grado.

Legge di annullamento del prodotto

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

In simboli, possiamo scrivere

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

In simboli, possiamo scrivere

$$a \cdot b = 0$$

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

In simboli, possiamo scrivere

$$a \cdot b = 0 \iff a = 0 \lor b = 0,$$

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

In simboli, possiamo scrivere

$$a \cdot b = 0 \iff a = 0 \lor b = 0,$$

o, più generalmente,

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

In simboli, possiamo scrivere

$$a \cdot b = 0 \iff a = 0 \lor b = 0,$$

o, più generalmente,

$$a \cdot b \cdot c \cdot \ldots \cdot z = 0$$
 \iff $a = 0 \lor b = 0 \lor c = 0 \lor \ldots \lor z = 0.$

Questo teorema permette di risolvere equazioni fattorizzate, ossia del tipo

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

In simboli, possiamo scrivere

$$a \cdot b = 0 \iff a = 0 \lor b = 0,$$

o, più generalmente,

$$a \cdot b \cdot c \cdot \ldots \cdot z = 0$$
 \iff $a = 0 \lor b = 0 \lor c = 0 \lor \ldots \lor z = 0.$

Questo teorema permette di risolvere equazioni fattorizzate, ossia del tipo

$$P_1(x) \cdot P_2(x) \cdot \ldots \cdot P_n(x) = 0.$$

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

In simboli, possiamo scrivere

$$a \cdot b = 0 \iff a = 0 \lor b = 0,$$

o, più generalmente,

$$a \cdot b \cdot c \cdot \ldots \cdot z = 0$$
 \iff $a = 0 \lor b = 0 \lor c = 0 \lor \ldots \lor z = 0.$

Questo teorema permette di risolvere equazioni fattorizzate, ossia del tipo

$$P_1(x) \cdot P_2(x) \cdot \ldots \cdot P_n(x) = 0.$$

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

$$x + 1 = 0$$
.

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

$$x + 1 = 0,$$
 $x - 3 = 0,$

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

$$x + 1 = 0$$
, $x - 3 = 0$, $5x + 7 = 0$

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

le soluzioni si trovano risolvendo

$$x + 1 = 0$$
, $x - 3 = 0$, $5x + 7 = 0$

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

le soluzioni si trovano risolvendo

$$x + 1 = 0$$
, $x - 3 = 0$, $5x + 7 = 0$

$$x = -1$$
.

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

le soluzioni si trovano risolvendo

$$x + 1 = 0$$
, $x - 3 = 0$, $5x + 7 = 0$

$$x = -1, \qquad x = 3,$$

In simboli, le soluzioni si troveranno annullando separatamente i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

le soluzioni si trovano risolvendo

$$x + 1 = 0$$
, $x - 3 = 0$, $5x + 7 = 0$

$$x = -1,$$
 $x = 3,$ $x = -\frac{7}{5}.$

Se il polinomio che costituisce l'equazione ha grado due, può darsi che sia fattorizzabile con il noto metodo della somma e del prodotto.

Se il polinomio che costituisce l'equazione ha grado due, può darsi che sia fattorizzabile con il noto metodo della somma e del prodotto. Richiamiamo di che si tratta.

Se il polinomio che costituisce l'equazione ha grado due, può darsi che sia fattorizzabile con il noto metodo della somma e del prodotto. Richiamiamo di che si tratta. Dato il polinomio

Dato il polinomio

$$ax^2 + bx + c$$
,

Richiamiamo di che si tratta.

Dato il polinomio

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

Richiamiamo di che si tratta.

Dato il polinomio

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

$$p + q = b$$
,

Richiamiamo di che si tratta.

Dato il polinomio

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

$$p + q = b$$
, $pq = ac$,

Richiamiamo di che si tratta.

Dato il polinomio

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

$$p+q=b, \qquad pq=ac,$$

allora si ha che il polinomio è fattorizzabile.

Per esempio, dato il polinomio $2x^2 - x - 3$, cerchiamo due numeri aventi somma -1 e prodotto -6.

Equazioni complete

$$2x^2 - x - 3 = 2x^2 - 3x + 2x - 3 =$$

$$2x^2 - x - 3 = 2x^2 - 3x + 2x - 3 = x(2x - 3) + (2x - 3) =$$

$$2x^2 - x - 3 = 2x^2 - 3x + 2x - 3 = x(2x - 3) + (2x - 3) = (2x - 3)(x + 1).$$

$$2x^2 - x - 3 = 2x^2 - 3x + 2x - 3 = x(2x - 3) + (2x - 3) = (2x - 3)(x + 1).$$

Pertanto, le soluzioni dell'equazione

Somma e prodotto di soluzioni

$$2x^2 - x - 3 = 2x^2 - 3x + 2x - 3 = x(2x - 3) + (2x - 3) = (2x - 3)(x + 1).$$

Pertanto, le soluzioni dell'equazione

$$2x^2 - x - 3 = 0$$

Somma e prodotto di soluzioni

$$2x^2 - x - 3 = 2x^2 - 3x + 2x - 3 = x(2x - 3) + (2x - 3) = (2x - 3)(x + 1).$$

Pertanto, le soluzioni dell'equazione

$$2x^2 - x - 3 = 0$$

$$2x^2 - x - 3 = 2x^2 - 3x + 2x - 3 = x(2x - 3) + (2x - 3) = (2x - 3)(x + 1).$$

Pertanto, le soluzioni dell'equazione

$$2x^2 - x - 3 = 0$$

$$2x - 3 = 0$$

$$2x^2 - x - 3 = 2x^2 - 3x + 2x - 3 = x(2x - 3) + (2x - 3) = (2x - 3)(x + 1).$$

Pertanto, le soluzioni dell'equazione

$$2x^2 - x - 3 = 0$$

$$2x - 3 = 0$$
 e

$$2x^2 - x - 3 = 2x^2 - 3x + 2x - 3 = x(2x - 3) + (2x - 3) = (2x - 3)(x + 1).$$

Pertanto, le soluzioni dell'equazione

$$2x^2 - x - 3 = 0$$

$$2x - 3 = 0$$
 e $x + 1 = 0$

$$2x^2 - x - 3 = 2x^2 - 3x + 2x - 3 = x(2x - 3) + (2x - 3) = (2x - 3)(x + 1).$$

Pertanto, le soluzioni dell'equazione

$$2x^2 - x - 3 = 0$$

si trovano risolvendo le equazioni di primo grado

$$2x - 3 = 0$$
 e $x + 1 = 0$

e sono quindi x = -1 e x = 3/2.

Richiam

Rientrano in questo caso due classi particolari di equazioni di secondo grado:

• le equazioni *spurie*, della forma $ax^2 + bx = 0$

• le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)

grado:

Rientrano in questo caso due classi particolari di equazioni di secondo

- le equazioni spurie, della forma $ax^2 + bx = 0$ (dunque c = 0)
- \bigcirc le equazioni pure, della forma $ax^2 c = 0$ con a, c concordi in segno

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- ② le equazioni *pure*, della forma $ax^2-c=0$ con a,c concordi in segno (dunque b=0)

- le equazioni spurie, della forma $ax^2 + bx = 0$ (dunque c = 0)
- \bigcirc le equazioni pure, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente;

- le equazioni spurie, della forma $ax^2 + bx = 0$ (dunque c = 0)
- \bigcirc le equazioni pure, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Equazioni complete

Le equazioni spurie si fattorizzano facilmente; infatti $ax^2 + bx = x(ax + b)$ e quindi

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **②** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti $ax^2 + bx = x(ax + b)$ e quindi

Un'equazione spuria ammette sempre la soluzione nulla.

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **②** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Equazioni complete

Le equazioni spurie si fattorizzano facilmente; infatti $ax^2 + bx = x(ax + b)$ e quindi

Un'equazione spuria ammette sempre la soluzione nulla. L'altra soluzione si ottiene dividendo l'equazione data per x e risolvendo l'equazione di primo grado risultante.

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **②** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Equazioni complete

Le equazioni spurie si fattorizzano facilmente; infatti $ax^2 + bx = x(ax + b)$ e quindi

Un'equazione spuria ammette sempre la soluzione nulla. L'altra soluzione si ottiene dividendo l'equazione data per x e risolvendo l'equazione di primo grado risultante.

- le equazioni spurie, della forma $ax^2 + bx = 0$ (dunque c = 0)
- \bigcirc le equazioni pure, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti $ax^2 + bx = x(ax + b)$ e quindi

Un'equazione spuria ammette sempre la soluzione nulla. L'altra soluzione si ottiene dividendo l'equazione data per x e risolvendo l'equazione di primo grado risultante.

Per esempio, l'equazione

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **②** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti $ax^2 + bx = x(ax + b)$ e quindi

Un'equazione spuria ammette sempre la soluzione nulla. L'altra soluzione si ottiene dividendo l'equazione data per x e risolvendo l'equazione di primo grado risultante.

Per esempio, l'equazione

Richiami

$$-3x^2 + 8x = 0$$

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **②** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti $ax^2 + bx = x(ax + b)$ e quindi

Un'equazione spuria ammette sempre la soluzione nulla. L'altra soluzione si ottiene dividendo l'equazione data per x e risolvendo l'equazione di primo grado risultante.

Per esempio, l'equazione

$$-3x^2 + 8x = 0$$

si risolve ponendo

Richiami

$$x = 0$$
,

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **②** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti $ax^2 + bx = x(ax + b)$ e quindi

Un'equazione spuria ammette sempre la soluzione nulla. L'altra soluzione si ottiene dividendo l'equazione data per x e risolvendo l'equazione di primo grado risultante.

Per esempio, l'equazione

$$-3x^2 + 8x = 0$$

si risolve ponendo

Richiami

$$x = 0,$$
 $-3x + 8 = 0$

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **②** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti $ax^2 + bx = x(ax + b)$ e quindi

Un'equazione spuria ammette sempre la soluzione nulla. L'altra soluzione si ottiene dividendo l'equazione data per x e risolvendo l'equazione di primo grado risultante.

Per esempio, l'equazione

$$-3x^2 + 8x = 0$$

si risolve ponendo

Richiami

$$x = 0,$$
 $-3x + 8 = 0$

e le soluzioni sono quindi

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **②** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti $ax^2 + bx = x(ax + b)$ e quindi

Un'equazione spuria ammette sempre la soluzione nulla. L'altra soluzione si ottiene dividendo l'equazione data per x e risolvendo l'equazione di primo grado risultante.

Per esempio, l'equazione

$$-3x^2 + 8x = 0$$

si risolve ponendo

$$x = 0,$$
 $-3x + 8 = 0$

e le soluzioni sono quindi

$$x = 0$$
 e $x = \frac{8}{3}$.

Un'equazione pura si fattorizza sempre, ricorrendo alle radici quadrate.

Un'equazione pura si fattorizza sempre, ricorrendo alle radici quadrate. Infatti, se ad esempio a e c sono positivi,

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

Un'equazione pura si fattorizza sempre, ricorrendo alle radici quadrate. Infatti, se ad esempio *a* e *c* sono positivi,

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno).

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$2x^2-9=0$$

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$2x^2-9=0$$

si risolve scomponendo, così:

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$2x^2 - 9 = 0$$

si risolve scomponendo, così:

$$(\sqrt{2}x + 3)(\sqrt{2}x - 3) = 0$$

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$2x^2-9=0$$

si risolve scomponendo, così:

$$(\sqrt{2}x+3)(\sqrt{2}x-3)=0$$

e dunque le soluzioni sono date da

$$x = -\frac{3}{\sqrt{2}}$$

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$2x^2-9=0$$

si risolve scomponendo, così:

$$(\sqrt{2}x + 3)(\sqrt{2}x - 3) = 0$$

e dunque le soluzioni sono date da

$$x = -\frac{3}{\sqrt{2}}$$
 e

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$2x^2-9=0$$

si risolve scomponendo, così:

$$(\sqrt{2}x + 3)(\sqrt{2}x - 3) = 0$$

e dunque le soluzioni sono date da

$$x = -\frac{3}{\sqrt{2}}$$
 e $x = \frac{3}{\sqrt{2}}$.

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$2x^2-9=0$$

si risolve scomponendo, così:

$$(\sqrt{2}x + 3)(\sqrt{2}x - 3) = 0$$

e dunque le soluzioni sono date da

$$x = -\frac{3}{\sqrt{2}}$$
 e $x = \frac{3}{\sqrt{2}}$.

Spesso le soluzioni di un'equazione pura si scrivono nella forma

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$2x^2-9=0$$

si risolve scomponendo, così:

$$(\sqrt{2}x+3)(\sqrt{2}x-3)=0$$

e dunque le soluzioni sono date da

$$x = -\frac{3}{\sqrt{2}}$$
 e $x = \frac{3}{\sqrt{2}}$.

Spesso le soluzioni di un'equazione pura si scrivono nella forma

$$x = \pm \sqrt{\frac{c}{a}}$$
.

Equazioni complete

$$ax^2 + bx + c = 0$$
 $(a \neq 0)$.

$$ax^2 + bx + c = 0$$
 $(a \neq 0)$.

Siccome $a \neq 0$, possiamo moltiplicare ambo i membri per 4a, ottenendo

$$ax^2 + bx + c = 0$$
 $(a \neq 0)$.

Siccome $a \neq 0$, possiamo moltiplicare ambo i membri per 4a, ottenendo

$$4a^2x^2 + 4abx + 4ac = 0$$

$$ax^2 + bx + c = 0 \qquad (a \neq 0).$$

Siccome $a \neq 0$, possiamo moltiplicare ambo i membri per 4a, ottenendo

$$4a^2x^2 + 4abx + 4ac = 0$$

e aggiungere e togliere b^2 :

$$ax^2 + bx + c = 0$$
 $(a \neq 0)$.

Siccome $a \neq 0$, possiamo moltiplicare ambo i membri per 4a, ottenendo

$$4a^2x^2 + 4abx + 4ac = 0$$

e aggiungere e togliere b^2 :

$$4a^2x^2 + 4abx + 4ac - b^2 + b^2 = 0$$

$$ax^2 + bx + c = 0 \qquad (a \neq 0).$$

Siccome $a \neq 0$, possiamo moltiplicare ambo i membri per 4a, ottenendo

$$4a^2x^2 + 4abx + 4ac = 0$$

e aggiungere e togliere b^2 :

$$4a^2x^2 + 4abx + 4ac - b^2 + b^2 = 0$$

Portando $4ac - b^2$ a secondo membro risulta

$$ax^2 + bx + c = 0 \qquad (a \neq 0).$$

Siccome $a \neq 0$, possiamo moltiplicare ambo i membri per 4a, ottenendo

$$4a^2x^2 + 4abx + 4ac = 0$$

e aggiungere e togliere b^2 :

$$4a^2x^2 + 4abx + 4ac - b^2 + b^2 = 0$$

Portando $4ac - b^2$ a secondo membro risulta

$$4a^2x^2 + 4abx + b^2 = b^2 - 4ac$$

$$ax^2 + bx + c = 0 \qquad (a \neq 0).$$

Siccome $a \neq 0$, possiamo moltiplicare ambo i membri per 4a, ottenendo

$$4a^2x^2 + 4abx + 4ac = 0$$

e aggiungere e togliere b^2 :

$$4a^2x^2 + 4abx + 4ac - b^2 + b^2 = 0$$

Portando $4ac - b^2$ a secondo membro risulta

$$4a^2x^2 + 4abx + b^2 = b^2 - 4ac$$

ossia

$$ax^2 + bx + c = 0 \qquad (a \neq 0).$$

Siccome $a \neq 0$, possiamo moltiplicare ambo i membri per 4a, ottenendo

$$4a^2x^2 + 4abx + 4ac = 0$$

e aggiungere e togliere b^2 :

$$4a^2x^2 + 4abx + 4ac - b^2 + b^2 = 0$$

Portando $4ac - b^2$ a secondo membro risulta

$$4a^2x^2 + 4abx + b^2 = b^2 - 4ac$$

ossia

$$(2ax + b)^2 = b^2 - 4ac.$$

$$ax^2 + bx + c = 0 \qquad (a \neq 0).$$

Siccome $a \neq 0$, possiamo moltiplicare ambo i membri per 4a, ottenendo

$$4a^2x^2 + 4abx + 4ac = 0$$

e aggiungere e togliere b^2 :

$$4a^2x^2 + 4abx + 4ac - b^2 + b^2 = 0$$

Portando $4ac - b^2$ a secondo membro risulta

$$4a^2x^2 + 4abx + b^2 = b^2 - 4ac$$

ossia

$$(2ax + b)^2 = b^2 - 4ac.$$

Equazioni complete

$$b^2 - 4ac \geqslant 0$$

Equazioni complete

$$b^2 - 4ac \geqslant 0$$

Equazioni complete

abbiamo

$$b^2 - 4ac \geqslant 0$$

abbiamo

$$2ax + b = \pm \sqrt{b^2 - 4ac}$$

$$b^2 - 4ac \geqslant 0$$

abbiamo

$$2ax + b = \pm \sqrt{b^2 - 4ac}$$

e quindi, ricavando x,

$$b^2 - 4ac \geqslant 0$$

abbiamo

$$2ax + b = \pm \sqrt{b^2 - 4ac}$$

e quindi, ricavando x,

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

$$b^2 - 4ac \geqslant 0$$

abbiamo

$$2ax + b = \pm \sqrt{b^2 - 4ac}$$

e quindi, ricavando x,

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Invece, se $b^2 - 4ac < 0$, non vi sono soluzioni, in quanto $(2ax + b)^2$ è positivo, e non potrà mai essere uguale a $b^2 - 4ac$, che è negativo.

$$\Delta = b^2 - 4ac.$$

Somma e prodotto di soluzioni

$$\Delta = b^2 - 4ac.$$

Ricapitolando, abbiamo

Somma e prodotto di soluzioni

$$\Delta = b^2 - 4ac.$$

Ricapitolando, abbiamo

Somma e prodotto di soluzioni

Equazioni complete

Data un'equazione di secondo grado nella forma

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che, posto $\Delta = b^2 - 4ac$

 $oldsymbol{0}$ se $\Delta>0$ l'equazione ammette due soluzioni date da

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che, posto $\Delta = b^2 - 4ac$

 $oldsymbol{0}$ se $\Delta>0$ l'equazione ammette due soluzioni date da

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a};$$

Teorema

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che, posto $\Delta = b^2 - 4ac$

 $oldsymbol{0}$ se $\Delta>0$ l'equazione ammette due soluzioni date da

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a};$$

 $oldsymbol{0}$ se $\Delta=0$, l'equazione ammette una sola soluzione data da

Teorema

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che, posto $\Delta = b^2 - 4ac$

 $oldsymbol{0}$ se $\Delta>0$ l'equazione ammette due soluzioni date da

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a};$$

 $oldsymbol{Q}$ se $\Delta=0$, l'equazione ammette una sola soluzione data da

$$x=-\frac{b}{2a};$$

Teorema

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che, posto $\Delta = b^2 - 4ac$

 $oldsymbol{0}$ se $\Delta>0$ l'equazione ammette due soluzioni date da

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a};$$

 $oldsymbol{0}$ se $\Delta=0$, l'equazione ammette una sola soluzione data da

$$x=-\frac{b}{2a};$$

 \bullet se $\Delta < 0$, l'equazione non ammette soluzioni.

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

coincidono.

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

coincidono. Per questo motivo spesso si dice che se $\Delta=0$ si hanno "due soluzioni coincidenti".

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

coincidono. Per questo motivo spesso si dice che se $\Delta=0$ si hanno "due soluzioni coincidenti". Questa strana locuzione ha un suo significato geometrico che apparirà chiaro in Geometria Analitica.

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} =$$

$$x_{1,2} = -rac{b}{2a} \pm rac{\sqrt{b^2 - 4ac}}{2a} = = -rac{d}{a} \pm rac{\sqrt{4d^2 - 4ac}}{2a} =$$

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = = -\frac{d}{a} \pm \frac{\sqrt{4d^2 - 4ac}}{2a} = = -\frac{d \pm \sqrt{d^2 - ac}}{a}$$

Se in un'equazione di secondo grado si ha b=2d, la formula risolutiva diventa

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = = -\frac{d}{a} \pm \frac{\sqrt{4d^2 - 4ac}}{2a} = = -\frac{d \pm \sqrt{d^2 - ac}}{a}$$

che viene detta formula ridotta ed è comoda quando b è pari, cosicché d è intero.

Se in un'equazione di secondo grado si ha b=2d, la formula risolutiva diventa

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = = -\frac{d}{a} \pm \frac{\sqrt{4d^2 - 4ac}}{2a} = = -\frac{d \pm \sqrt{d^2 - ac}}{a}$$

che viene detta formula ridotta ed è comoda quando b è pari, cosicché d è intero.

Se infine si ha anche a=1 (cosa che in teoria è sempre possibile avere, a costo però di trovare eventualmente altri coefficienti frazionari), e b=-2p l'equazione assume la forma

Se in un'equazione di secondo grado si ha b=2d, la formula risolutiva diventa

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = = -\frac{d}{a} \pm \frac{\sqrt{4d^2 - 4ac}}{2a} = = -\frac{d \pm \sqrt{d^2 - ac}}{a}$$

che viene detta formula ridotta ed è comoda quando b è pari, cosicché d è intero.

Se infine si ha anche a=1 (cosa che in teoria è sempre possibile avere, a costo però di trovare eventualmente altri coefficienti frazionari), e b=-2p l'equazione assume la forma

$$x^2 - 2px + q = 0$$

Se in un'equazione di secondo grado si ha b=2d, la formula risolutiva diventa

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = \\ = -\frac{d}{a} \pm \frac{\sqrt{4d^2 - 4ac}}{2a} = \\ = -\frac{d \pm \sqrt{d^2 - ac}}{a}$$

che viene detta formula ridotta ed è comoda quando b è pari, cosicché d è intero.

Se infine si ha anche a=1 (cosa che in teoria è sempre possibile avere, a costo però di trovare eventualmente altri coefficienti frazionari), e b=-2p l'equazione assume la forma

$$x^2 - 2px + q = 0$$

e la formula diventa

Se in un'equazione di secondo grado si ha b=2d, la formula risolutiva diventa

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = \\ = -\frac{d}{a} \pm \frac{\sqrt{4d^2 - 4ac}}{2a} = \\ = -\frac{d \pm \sqrt{d^2 - ac}}{a}$$

che viene detta formula ridotta ed è comoda quando b è pari, cosicché d è intero.

Se infine si ha anche a=1 (cosa che in teoria è sempre possibile avere, a costo però di trovare eventualmente altri coefficienti frazionari), e b=-2p l'equazione assume la forma

$$x^2 - 2px + q = 0$$

e la formula diventa

$$x_{1,2} = p \pm \sqrt{p^2 - q}$$
.

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} =$$

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

e

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} =$$

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

e

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

Abbiamo quindi dimostrato che

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Equazioni complete

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

Abbiamo quindi dimostrato che

Somma delle soluzioni di un'equazione di secondo grado

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

Abbiamo quindi dimostrato che

Somma delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

Abbiamo quindi dimostrato che

Somma delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

Abbiamo quindi dimostrato che

Somma delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che la somma delle soluzioni è data da

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Equazioni complete

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

Abbiamo quindi dimostrato che

Somma delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che la somma delle soluzioni è data da

$$x_1 + x_2 = -\frac{b}{a}$$
.

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Equazioni complete

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

Abbiamo quindi dimostrato che

Somma delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che la somma delle soluzioni è data da

$$x_1 + x_2 = -\frac{b}{a}$$
.

Vediamo ora il prodotto.

Vediamo ora il prodotto. Abbiamo

Vediamo ora il prodotto. Abbiamo

$$x_1x_2 =$$

Vediamo ora il prodotto. Abbiamo

$$x_1x_2 = \frac{-b - \sqrt{\Delta}}{2a} \frac{-b + \sqrt{\Delta}}{2a}$$

$$x_1 x_2 = \frac{-b - \sqrt{\Delta}}{2a} \frac{-b + \sqrt{\Delta}}{2a}$$
$$= \frac{b^2 - (b^2 - 4ac)}{4a^2} =$$

Vediamo ora il prodotto. Abbiamo

$$x_1 x_2 = \frac{-b - \sqrt{\Delta}}{2a} \frac{-b + \sqrt{\Delta}}{2a}$$
$$= \frac{b^2 - (b^2 - 4ac)}{4a^2} = \frac{4ac}{4a^2} =$$

Vediamo ora il prodotto. Abbiamo

$$x_1 x_2 = \frac{-b - \sqrt{\Delta}}{2a} \frac{-b + \sqrt{\Delta}}{2a}$$

$$b^2 - (b^2 - 4ac) = 4a$$

$$x_1 x_2 = \frac{2a}{2a} \frac{b + \sqrt{2}}{2a}$$
$$= \frac{b^2 - (b^2 - 4ac)}{4a^2} = \frac{4ac}{4a^2} = \frac{c}{a}.$$

Prodotto delle soluzioni di un'equazione di secondo grado

Prodotto delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

Prodotto delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

Prodotto delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che il prodotto delle soluzioni è dato da

Prodotto delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che il prodotto delle soluzioni è dato da

$$x_1x_2=\frac{c}{a}.$$

Prodotto delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che il prodotto delle soluzioni è dato da

$$x_1x_2=\frac{c}{a}.$$

Prendiamo un'equazione completa

Prendiamo un'equazione completa

$$ax^2 + bx + c = 0$$

Prendiamo un'equazione completa

$$ax^2 + bx + c = 0$$

e dividiamola per a, ottenendo

Prendiamo un'equazione completa

$$ax^2 + bx + c = 0$$

e dividiamola per a, ottenendo

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0.$$

Prendiamo un'equazione completa

$$ax^2 + bx + c = 0$$

e dividiamola per a, ottenendo

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0.$$

Indicando con s la somma delle soluzioni e con p il loro prodotto, possiamo anche scrivere, in virtù di quanto detto sopra,

Prendiamo un'equazione completa

$$ax^2 + bx + c = 0$$

e dividiamola per a, ottenendo

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0.$$

Indicando con s la somma delle soluzioni e con p il loro prodotto, possiamo anche scrivere, in virtù di quanto detto sopra,

$$x^2 - sx + p = 0.$$

Prendiamo un'equazione completa

$$ax^2 + bx + c = 0$$

e dividiamola per a, ottenendo

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0.$$

Indicando con s la somma delle soluzioni e con p il loro prodotto, possiamo anche scrivere, in virtù di quanto detto sopra,

$$x^2 - sx + p = 0.$$

Adesso supponiamo che l'equazione sia risolubile e osserviamo che

• Se p > 0, le soluzioni sono concordi in segno; il loro segno sarà quindi quello della somma.

- Se p > 0, le soluzioni sono concordi in segno; il loro segno sarà quindi quello della somma.
- Se p < 0, le soluzioni sono discordi in segno;

- Se p > 0, le soluzioni sono concordi in segno; il loro segno sarà quindi quello della somma.
- Se p < 0, le soluzioni sono discordi in segno; il segno di quella maggiore in valore assoluto sarà il segno della somma.

- Se p > 0, le soluzioni sono concordi in segno; il loro segno sarà quindi quello della somma.
- Se p < 0, le soluzioni sono discordi in segno; il segno di quella maggiore in valore assoluto sarà il segno della somma.

- Se p > 0, le soluzioni sono concordi in segno; il loro segno sarà quindi quello della somma.
- Se p < 0, le soluzioni sono discordi in segno; il segno di quella maggiore in valore assoluto sarà il segno della somma.

• se s > 0, i coefficienti dell'equazione hanno segni + + + oppure - - - (a seconda del segno di a)

- Se p > 0, le soluzioni sono concordi in segno; il loro segno sarà quindi quello della somma.
- Se p < 0, le soluzioni sono discordi in segno; il segno di quella maggiore in valore assoluto sarà il segno della somma.

Richiami

- se s > 0, i coefficienti dell'equazione hanno segni + + + oppure - (a seconda del segno di a)
- se s < 0, i coefficienti dell'equazione hanno segni + + oppure + (a seconda del segno di a).

- Se p > 0, le soluzioni sono concordi in segno; il loro segno sarà quindi quello della somma.
- Se p < 0, le soluzioni sono discordi in segno; il segno di quella maggiore in valore assoluto sarà il segno della somma.

Richiami

- se s > 0, i coefficienti dell'equazione hanno segni + + + oppure - (a seconda del segno di a)
- se s < 0, i coefficienti dell'equazione hanno segni + + oppure + (a seconda del segno di a).

Nel secondo caso, invece, i coefficienti dell'equazione hanno segni $+\ +\ -$ oppure $+\ -\ -$.

Possiamo pertanto chiamare permanenza di segno ogni coppia ++ o -- di segni consecutivi nell'equazione e variazione ogni coppia +- o -+.

Possiamo pertanto chiamare permanenza di segno ogni coppia + + o - - di segni consecutivi nell'equazione e variazione ogni coppia + - o - +. Per esempio,

Possiamo pertanto chiamare permanenza di segno ogni coppia ++ o

- – di segni consecutivi nell'equazione e *variazione* ogni coppia + – o

Equazioni complete

- -+. Per esempio,
 - l'equazione $-2x^2 + x 1 = 0$ ha due variazioni

Possiamo pertanto chiamare permanenza di segno ogni coppia ++ o

- - di segni consecutivi nell'equazione e $\emph{variazione}$ ogni coppia + - o

Equazioni complete

- +. Per esempio,
 - l'equazione $-2x^2 + x 1 = 0$ ha due variazioni (-+-)

Richiami

- — di segni consecutivi nell'equazione e *variazione* ogni coppia + o +. Per esempio,
 - l'equazione $-2x^2 + x 1 = 0$ ha due variazioni (-+-)
 - l'equazione $4x^2 9x + 2 = 0$ ha due variazioni

Richiami

Possiamo pertanto chiamare *permanenza* di segno ogni coppia + + o

- di segni consecutivi nell'equazione e *variazione* ogni coppia + o
- -+. Per esempio,
 - l'equazione $-2x^2 + x 1 = 0$ ha due variazioni $(\underbrace{-+-}_{V})$
 - l'equazione $4x^2 9x + 2 = 0$ ha due variazioni (+ +)

- – di segni consecutivi nell'equazione e $\emph{variazione}$ ogni coppia + – o

Equazioni complete

+. Per esempio,

Richiami

- l'equazione $-2x^2 + x 1 = 0$ ha due variazioni $(\underbrace{-+-}_{V})$
- l'equazione $4x^2 9x + 2 = 0$ ha due variazioni (+ +)
- l'equazione $x^2 + x 1 = 0$ ha una variazione e una permanenza

Possiamo pertanto chiamare permanenza di segno ogni coppia + + o- di segni consecutivi nell'equazione e variazione ogni coppia + - o -+. Per esempio.

- l'equazione $-2x^2 + x 1 = 0$ ha due variazioni (-+-)
- l'equazione $4x^2 9x + 2 = 0$ ha due variazioni (+ +)
- l'equazione $x^2 + x 1 = 0$ ha una variazione e una permanenza

Possiamo pertanto chiamare *permanenza* di segno ogni coppia ++ o -- di segni consecutivi nell'equazione e *variazione* ogni coppia +- o -+. Per esempio,

- l'equazione $-2x^2 + x 1 = 0$ ha due variazioni $(\underbrace{-+-}_{V})$
- l'equazione $4x^2 9x + 2 = 0$ ha due variazioni (+ +)
- l'equazione $x^2+x-1=0$ ha una variazione e una permanenza $(\underbrace{++}_{R}-)$
- l'equazione $3x^2 + x + 2 = 0$ ha due permanenze

Possiamo pertanto chiamare permanenza di segno ogni coppia ++ o -- di segni consecutivi nell'equazione e variazione ogni coppia +- o -+. Per esempio,

- l'equazione $-2x^2 + x 1 = 0$ ha due variazioni $(\underbrace{-+-}_{V})$
- l'equazione $4x^2 9x + 2 = 0$ ha due variazioni (+ +)
- l'equazione $x^2+x-1=0$ ha una variazione e una permanenza $(\underbrace{+\ +\ -})$
- l'equazione $3x^2 + x + 2 = 0$ ha due permanenze (+ + +)

Possiamo pertanto chiamare permanenza di segno ogni coppia ++ o - di segni consecutivi nell'equazione e variazione ogni coppia + o - +. Per esempio,

- l'equazione $-2x^2 + x 1 = 0$ ha due variazioni $(\underbrace{-+-}_{V})$
- l'equazione $4x^2 9x + 2 = 0$ ha due variazioni (+ +)
- l'equazione $x^2+x-1=0$ ha una variazione e una permanenza $(\underbrace{+\ +\ -})$
- l'equazione $3x^2 + x + 2 = 0$ ha due permanenze (+ + +)

2 variazioni
$$+ - + \text{ opp. } - + -$$
:

2 variazioni
$$+ - + \text{ opp. } - + -$$
: 2 sol. positive

2 permanenze
$$+ + + \text{ opp. } - - -$$
:

2 variazioni
$$+ - + \text{ opp. } - + -:$$
 2 sol. positive

2 permanenze + + + opp. - - - : 2 sol. negative

1 var. e 1 perm. +-- opp. -++: 1 sol. pos. e una neg.

2 variazioni + - + opp. - + -: 2 sol. positive 2 permanenze + + + opp. - - - : 2 sol. negative 1 var. e 1 perm. + - opp. - + + 1 sol. pos. e una neg. 1 perm. e 1 var. + + - opp. - - +: 1 sol. pos. e una neg.

```
2 variazioni +-+ opp. -+-: 2 sol. positive
2 permanenze +++ opp. ---: 2 sol. negative
1 var. e 1 perm. +-- opp. -++: 1 sol. pos. e una neg.
1 perm. e 1 var. ++- opp. --+: 1 sol. pos. e una neg.
```

(negli ultimi due casi, la soluzione maggiore in valore assoluto è quella che corrisponde alla prima delle occorrenze (variazione o permanenza)).

```
2 variazioni + - + \text{ opp. } - + -: 2 sol. positive
2 permanenze + + + \text{ opp. } - - - : 2 sol. negative
1 var. e 1 perm. + - - \text{ opp. } - + +: 1 sol. pos. e una neg.
1 perm. e 1 var. + + - \text{ opp. } - - +: 1 sol. pos. e una neg.
```

Equazioni complete

(negli ultimi due casi, la soluzione maggiore in valore assoluto è quella che corrisponde alla prima delle occorrenze (variazione o permanenza)).

Questa regola è nota come regola di Cartesio:

```
2 variazioni + - + \text{ opp. } - + -: 2 sol. positive
2 permanenze + + + \text{ opp. } - - - : 2 sol. negative
1 var. e 1 perm. + - - \text{ opp. } - + +: 1 sol. pos. e una neg.
1 perm. e 1 var. + + - \text{ opp. } - - +: 1 sol. pos. e una neg.
```

(negli ultimi due casi, la soluzione maggiore in valore assoluto è quella che corrisponde alla prima delle occorrenze (variazione o permanenza)).

Questa regola è nota come regola di Cartesio: ad ogni variazione è associata una radice positiva, e ad ogni permanenza una negativa, la maggiore in valore assoluto associata alla prima delle due.

Parte II

percorso normale

- 6 Richiami
- 6 Equazioni fattorizzabili
- Equazioni non risolubili
- 8 Equazioni complete
- Somma e prodotto di soluzioni

$$ax^2 + bx + c = 0$$

$$ax^2 + bx + c = 0$$

$$ax^2 + bx + c = 0$$

dove a, b, c sono numeri reali e $a \neq 0$. Quindi

• $x^2 + x - 1 = 0$ è un'equazione di secondo grado;

Richiami

In questa lezione vedremo come risolvere la generica equazione di secondo grado

$$ax^2 + bx + c = 0$$

- $x^2 + x 1 = 0$ è un'equazione di secondo grado;
- $-2x^2 + x = 0$ è un'equazione di secondo grado;

Richiami

In questa lezione vedremo come risolvere la generica equazione di secondo grado

$$ax^2 + bx + c = 0$$

- $x^2 + x 1 = 0$ è un'equazione di secondo grado;
- $-2x^2 + x = 0$ è un'equazione di secondo grado;
- $x^2 + (\sqrt{2} 1)x + 1 = 0$ è un'equazione di secondo grado;

$$ax^2 + bx + c = 0$$

- $x^2 + x 1 = 0$ è un'equazione di secondo grado;
- $-2x^2 + x = 0$ è un'equazione di secondo grado;
- $x^2 + (\sqrt{2} 1)x + 1 = 0$ è un'equazione di secondo grado;
- 2x + 1 = 0 non è un'equazione di secondo grado;

Richiami

In questa lezione vedremo come risolvere la generica equazione di secondo grado

$$ax^2 + bx + c = 0$$

- $x^2 + x 1 = 0$ è un'equazione di secondo grado;
- $-2x^2 + x = 0$ è un'equazione di secondo grado;
- $x^2 + (\sqrt{2} 1)x + 1 = 0$ è un'equazione di secondo grado;
- 2x + 1 = 0 non è un'equazione di secondo grado;
- $x^3 + x^2 = 1$ non è un'equazione di secondo grado.

Richiami

Ricordiamo una importante proprietà dei numeri.

Legge di annullamento del prodotto

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

In simboli, possiamo scrivere

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

In simboli, possiamo scrivere

$$a \cdot b = 0$$

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

In simboli, possiamo scrivere

$$a \cdot b = 0 \iff a = 0 \lor b = 0,$$

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

In simboli, possiamo scrivere

$$a \cdot b = 0 \iff a = 0 \lor b = 0,$$

o, più generalmente,

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

In simboli, possiamo scrivere

$$a \cdot b = 0 \iff a = 0 \lor b = 0,$$

o, più generalmente,

Richiami

$$a \cdot b \cdot c \cdot \ldots \cdot z = 0$$
 \iff $a = 0 \lor b = 0 \lor c = 0 \lor \ldots \lor z = 0.$

Questo teorema permette di risolvere equazioni fattorizzate, ossia del tipo

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

In simboli, possiamo scrivere

$$a \cdot b = 0 \iff a = 0 \lor b = 0,$$

o, più generalmente,

Richiami

$$a \cdot b \cdot c \cdot \ldots \cdot z = 0$$
 \iff $a = 0 \lor b = 0 \lor c = 0 \lor \ldots \lor z = 0.$

Questo teorema permette di risolvere equazioni fattorizzate, ossia del tipo

$$P_1(x) \cdot P_2(x) \cdot \ldots \cdot P_n(x) = 0.$$

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

In simboli, possiamo scrivere

$$a \cdot b = 0 \iff a = 0 \lor b = 0,$$

o, più generalmente,

Richiami

$$a \cdot b \cdot c \cdot \ldots \cdot z = 0$$
 \iff $a = 0 \lor b = 0 \lor c = 0 \lor \ldots \lor z = 0.$

Questo teorema permette di risolvere equazioni fattorizzate, ossia del tipo

$$P_1(x) \cdot P_2(x) \cdot \ldots \cdot P_n(x) = 0.$$

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

Richiami

$$(x+1)(x-3)(5x+7)=0$$

$$x + 1 = 0$$
.

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

$$x + 1 = 0,$$
 $x - 3 = 0,$

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

$$x + 1 = 0$$
, $x - 3 = 0$, $5x + 7 = 0$

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

le soluzioni si trovano risolvendo

$$x + 1 = 0$$
, $x - 3 = 0$, $5x + 7 = 0$

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0, \quad P_2(x) = 0, \quad \dots \quad P_n(x) = 0.$$

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

le soluzioni si trovano risolvendo

$$x + 1 = 0$$
, $x - 3 = 0$, $5x + 7 = 0$

$$x = -1$$
.

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

le soluzioni si trovano risolvendo

$$x + 1 = 0$$
, $x - 3 = 0$, $5x + 7 = 0$

$$x = -1, \qquad x = 3,$$

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

le soluzioni si trovano risolvendo

$$x + 1 = 0$$
, $x - 3 = 0$, $5x + 7 = 0$

$$x = -1,$$
 $x = 3,$ $x = -\frac{7}{5}.$

Dato il polinomio

Dato il polinomio

$$ax^2 + bx + c$$
,

Dato il polinomio

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

Dato il polinomio

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

$$p+q=b$$
,

Dato il polinomio

Richiami

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

$$p + q = b$$
, $pq = ac$,

Dato il polinomio

Richiami

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

$$p+q=b, \qquad pq=ac,$$

Dato il polinomio

Richiami

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

$$p+q=b, \qquad pq=ac,$$

$$ax^2 + bx + c =$$

Dato il polinomio

Richiami

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

$$p+q=b, \qquad pq=ac,$$

$$ax^{2} + bx + c = ax^{2} + (p+q)x + \frac{pq}{a} =$$

Dato il polinomio

Richiami

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

$$p+q=b, \qquad pq=ac,$$

Dato il polinomio

Richiami

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

$$p+q=b, \qquad pq=ac,$$

$$ax^{2} + bx + c = ax^{2} + (p+q)x + \frac{pq}{a} = ax^{2} + px + qx + \frac{pq}{a} =$$

= $x(ax + p) + q\left(x + \frac{p}{a}\right) =$

Dato il polinomio

Richiami

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

$$p+q=b, \qquad pq=ac,$$

$$ax^{2} + bx + c = ax^{2} + (p+q)x + \frac{pq}{a} = ax^{2} + px + qx + \frac{pq}{a} =$$

= $x(ax + p) + q\left(x + \frac{p}{a}\right) = x(ax + p) + \frac{q}{a}(ax + p) =$

Dato il polinomio

Richiami

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

$$p+q=b, \qquad pq=ac,$$

$$ax^{2} + bx + c = ax^{2} + (p+q)x + \frac{pq}{a} = ax^{2} + px + qx + \frac{pq}{a} =$$

$$= x(ax+p) + q\left(x + \frac{p}{a}\right) = x(ax+p) + \frac{q}{a}(ax+p) = (ax+p)\left(x + \frac{q}{a}\right)$$

Dato il polinomio

Richiami

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

$$p+q=b, \qquad pq=ac,$$

$$ax^{2} + bx + c = ax^{2} + (p+q)x + \frac{pq}{a} = ax^{2} + px + qx + \frac{pq}{a} =$$

$$= x(ax+p) + q\left(x + \frac{p}{a}\right) = x(ax+p) + \frac{q}{a}(ax+p) = (ax+p)\left(x + \frac{q}{a}\right)$$

$$= \frac{1}{a}(ax+p)(ax+q).$$

Per esempio, dato il polinomio $2x^2 - x - 3$, cerchiamo due numeri aventi somma -1 e prodotto -6.

Per esempio, dato il polinomio $2x^2 - x - 3$, cerchiamo due numeri aventi somma -1 e prodotto -6. Senza fatica troviamo che questi numeri sono -3 e 2, per cui

Per esempio, dato il polinomio $2x^2 - x - 3$, cerchiamo due numeri aventi somma -1 e prodotto -6. Senza fatica troviamo che questi numeri sono -3 e 2, per cui

$$2x^2 - x - 3 =$$

Per esempio, dato il polinomio $2x^2 - x - 3$, cerchiamo due numeri aventi somma -1 e prodotto -6. Senza fatica troviamo che questi numeri sono -3 e 2, per cui

$$2x^2 - x - 3 = \frac{1}{2}(2x - 3)(2x + 2) =$$

Per esempio, dato il polinomio $2x^2 - x - 3$, cerchiamo due numeri aventi somma -1 e prodotto -6. Senza fatica troviamo che questi numeri sono -3 e 2, per cui

$$2x^2 - x - 3 = \frac{1}{2}(2x - 3)(2x + 2) = (2x - 3)(x + 1).$$

Per esempio, dato il polinomio $2x^2 - x - 3$, cerchiamo due numeri aventi somma -1 e prodotto -6. Senza fatica troviamo che questi numeri sono -3 e 2, per cui

Equazioni complete

$$2x^2 - x - 3 = \frac{1}{2}(2x - 3)(2x + 2) = (2x - 3)(x + 1).$$

Pertanto, le soluzioni dell'equazione

Per esempio, dato il polinomio $2x^2 - x - 3$, cerchiamo due numeri aventi somma -1 e prodotto -6. Senza fatica troviamo che questi numeri sono -3 e 2, per cui

$$2x^2 - x - 3 = \frac{1}{2}(2x - 3)(2x + 2) = (2x - 3)(x + 1).$$

Pertanto, le soluzioni dell'equazione

$$2x^2 - x - 3 = 0$$

Per esempio, dato il polinomio $2x^2 - x - 3$, cerchiamo due numeri aventi somma -1 e prodotto -6. Senza fatica troviamo che questi numeri sono -3 e 2, per cui

$$2x^2 - x - 3 = \frac{1}{2}(2x - 3)(2x + 2) = (2x - 3)(x + 1).$$

Pertanto, le soluzioni dell'equazione

$$2x^2 - x - 3 = 0$$

Per esempio, dato il polinomio $2x^2 - x - 3$, cerchiamo due numeri aventi somma -1 e prodotto -6. Senza fatica troviamo che questi numeri sono -3 e 2, per cui

$$2x^2 - x - 3 = \frac{1}{2}(2x - 3)(2x + 2) = (2x - 3)(x + 1).$$

Pertanto, le soluzioni dell'equazione

$$2x^2 - x - 3 = 0$$

$$2x - 3 = 0$$

Per esempio, dato il polinomio $2x^2 - x - 3$, cerchiamo due numeri aventi somma -1 e prodotto -6. Senza fatica troviamo che questi numeri sono -3 e 2, per cui

$$2x^2 - x - 3 = \frac{1}{2}(2x - 3)(2x + 2) = (2x - 3)(x + 1).$$

Pertanto, le soluzioni dell'equazione

$$2x^2 - x - 3 = 0$$

$$2x - 3 = 0$$

Per esempio, dato il polinomio $2x^2-x-3$, cerchiamo due numeri aventi somma -1 e prodotto -6. Senza fatica troviamo che questi numeri sono -3 e 2, per cui

$$2x^2 - x - 3 = \frac{1}{2}(2x - 3)(2x + 2) = (2x - 3)(x + 1).$$

Pertanto, le soluzioni dell'equazione

$$2x^2 - x - 3 = 0$$

$$2x - 3 = 0$$
 e $x + 1 = 0$

Per esempio, dato il polinomio $2x^2 - x - 3$, cerchiamo due numeri aventi somma -1 e prodotto -6. Senza fatica troviamo che questi numeri sono -3 e 2, per cui

Equazioni complete

$$2x^2 - x - 3 = \frac{1}{2}(2x - 3)(2x + 2) = (2x - 3)(x + 1).$$

Pertanto, le soluzioni dell'equazione

$$2x^2 - x - 3 = 0$$

si trovano risolvendo le equazioni di primo grado

$$2x - 3 = 0$$
 e $x + 1 = 0$

e sono quindi x = -1 e x = 3/2.

• le equazioni *spurie*, della forma $ax^2 + bx = 0$

• le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- le equazioni *pure*, della forma $ax^2-c=0$ con a,c concordi in segno

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- ② le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

- **1** le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **②** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente;

- **1** le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- ② le equazioni *pure*, della forma $ax^2-c=0$ con a,c concordi in segno (dunque b=0)

Le equazioni spurie si fattorizzano facilmente; infatti

$$ax^2 + bx = x(ax + b)$$

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **②** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti

$$ax^2 + bx = x(ax + b)$$

e quindi

- **1** le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **②** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti

$$ax^2 + bx = x(ax + b)$$

e quindi

Un'equazione spuria ammette sempre la soluzione nulla.

- **1** le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **9** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti

$$ax^2 + bx = x(ax + b)$$

e quindi

Un'equazione spuria ammette sempre la soluzione nulla. L'altra soluzione si ottiene dividendo l'equazione data per x e risolvendo l'equazione di primo grado risultante.

- **1** le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **9** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti

$$ax^2 + bx = x(ax + b)$$

e quindi

Un'equazione spuria ammette sempre la soluzione nulla. L'altra soluzione si ottiene dividendo l'equazione data per x e risolvendo l'equazione di primo grado risultante.

- **1** le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **9** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti

$$ax^2 + bx = x(ax + b)$$

e quindi

Un'equazione spuria ammette sempre la soluzione nulla. L'altra soluzione si ottiene dividendo l'equazione data per x e risolvendo l'equazione di primo grado risultante.

Per esempio, l'equazione

- **1** le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **9** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti

$$ax^2 + bx = x(ax + b)$$

e quindi

Un'equazione spuria ammette sempre la soluzione nulla. L'altra soluzione si ottiene dividendo l'equazione data per x e risolvendo l'equazione di primo grado risultante.

Per esempio, l'equazione

$$-3x^2 + 8x = 0$$

- **1** le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **9** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti

$$ax^2 + bx = x(ax + b)$$

e quindi

Un'equazione spuria ammette sempre la soluzione nulla. L'altra soluzione si ottiene dividendo l'equazione data per x e risolvendo l'equazione di primo grado risultante.

Per esempio, l'equazione

$$-3x^2 + 8x = 0$$

si risolve ponendo

$$x = 0$$
.

- **1** le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **9** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti

$$ax^2 + bx = x(ax + b)$$

e quindi

Un'equazione spuria ammette sempre la soluzione nulla. L'altra soluzione si ottiene dividendo l'equazione data per x e risolvendo l'equazione di primo grado risultante.

Per esempio, l'equazione

$$-3x^2 + 8x = 0$$

si risolve ponendo

$$x = 0, -3x + 8 = 0$$

- **1** le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **9** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti

$$ax^2 + bx = x(ax + b)$$

e quindi

Un'equazione spuria ammette sempre la soluzione nulla. L'altra soluzione si ottiene dividendo l'equazione data per x e risolvendo l'equazione di primo grado risultante.

Per esempio, l'equazione

$$-3x^2 + 8x = 0$$

si risolve ponendo

$$x = 0$$
, $-3x + 8 = 0$

e le soluzioni sono quindi x = 0 e x = 8/3.

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno).

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$2x^2-9=0$$

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$2x^2-9=0$$

si risolve scomponendo, così:

Richiami

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$2x^2-9=0$$

si risolve scomponendo, così:

Richiami

$$(\sqrt{2}x + 3)(\sqrt{2}x - 3) = 0$$

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$2x^2-9=0$$

si risolve scomponendo, così:

Richiami

$$(\sqrt{2}x+3)(\sqrt{2}x-3)=0$$

$$x = -\frac{3}{\sqrt{2}}$$

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$2x^2-9=0$$

si risolve scomponendo, così:

Richiami

$$(\sqrt{2}x + 3)(\sqrt{2}x - 3) = 0$$

$$x = -\frac{3}{\sqrt{2}}$$
 e

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$2x^2-9=0$$

si risolve scomponendo, così:

Richiami

$$(\sqrt{2}x+3)(\sqrt{2}x-3)=0$$

$$x = -\frac{3}{\sqrt{2}}$$
 e $x = \frac{3}{\sqrt{2}}$.

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$2x^2-9=0$$

si risolve scomponendo, così:

Richiami

$$(\sqrt{2}x+3)(\sqrt{2}x-3)=0$$

$$x = -\frac{3}{\sqrt{2}}$$
 e $x = \frac{3}{\sqrt{2}}$.

$$ax^2 = c$$

$$ax^2 = c$$

allora, siccome $|x|^2 = x^2$, abbiamo

$$ax^2 = c$$

allora, siccome $|x|^2 = x^2$, abbiamo

$$a|x|^2=c$$

assoluto. Infatti, se

Notiamo che le soluzioni di un'equazione pura hanno lo stesso valore

$$ax^2 = c$$

allora, siccome $|x|^2 = x^2$, abbiamo

$$a|x|^2 = c$$

e dunque

$$|x|^2 = \frac{c}{a},$$

$$ax^2 = c$$

Equazioni complete

allora, siccome $|x|^2 = x^2$, abbiamo

$$a|x|^2 = c$$

e dunque

$$|x|^2 = \frac{c}{a},$$

dal che si deduce che

$$ax^2 = c$$

allora, siccome $|x|^2 = x^2$, abbiamo

$$a|x|^2=c$$

e dunque

$$|x|^2 = \frac{c}{a},$$

dal che si deduce che

$$|x| = \sqrt{\frac{c}{a}}.$$

$$ax^2 = c$$

allora, siccome $|x|^2 = x^2$, abbiamo

$$a|x|^2=c$$

e dunque

Richiami

$$|x|^2 = \frac{c}{a},$$

dal che si deduce che

$$|x| = \sqrt{\frac{c}{a}}.$$

Per questo motivo spesso le soluzioni di un'equazione pura si scrivono nella forma

$$ax^2 = c$$

Equazioni complete

allora, siccome $|x|^2 = x^2$, abbiamo

$$a|x|^2=c$$

e dunque

Richiami

$$|x|^2 = \frac{c}{a},$$

dal che si deduce che

$$|x| = \sqrt{\frac{c}{a}}.$$

Per questo motivo spesso le soluzioni di un'equazione pura si scrivono nella forma

$$x = \pm \sqrt{\frac{c}{a}}$$
.

Un'equazione di secondo grado potrebbe non ammettere soluzione.

Un'equazione di secondo grado potrebbe non ammettere soluzione. Per esempio, l'equazione

Un'equazione di secondo grado potrebbe non ammettere soluzione. Per esempio, l'equazione

$$x^2 + 1 = 0$$

Un'equazione di secondo grado potrebbe non ammettere soluzione. Per esempio, l'equazione

$$x^2 + 1 = 0$$

non può ammettere soluzione.

Un'equazione di secondo grado potrebbe non ammettere soluzione. Per esempio, l'equazione

$$x^2 + 1 = 0$$

non può ammettere soluzione. Infatti $x^2\geqslant 0$ per ogni possibile numero x, e quindi

Un'equazione di secondo grado potrebbe non ammettere soluzione. Per esempio, l'equazione

$$x^2 + 1 = 0$$

non può ammettere soluzione. Infatti $x^2\geqslant 0$ per ogni possibile numero x, e quindi

$$x^2 + 1 \geqslant 1$$

e quindi $x^2 + 1$ non potrà mai essere zero.

Un'equazione di secondo grado potrebbe non ammettere soluzione.

Per esempio, l'equazione $v^2 \perp 1 - v^2$

$$x^2 + 1 = 0$$

non può ammettere soluzione. Infatti $x^2\geqslant 0$ per ogni possibile numero x, e quindi

$$x^2 + 1 \geqslant 1$$

e quindi $x^2 + 1$ non potrà mai essere zero.

Teorema

Un'equazione della forma

Un'equazione di secondo grado potrebbe non ammettere soluzione. Per esempio, l'equazione

$$x^2 + 1 = 0$$

non può ammettere soluzione. Infatti $x^2\geqslant 0$ per ogni possibile numero x, e quindi

$$x^2 + 1 \ge 1$$

e quindi $x^2 + 1$ non potrà mai essere zero.

Teorema

Un'equazione della forma

$$ax^2 = c$$

Un'equazione di secondo grado potrebbe non ammettere soluzione. Per esempio, l'equazione

$$x^2 + 1 = 0$$

non può ammettere soluzione. Infatti $x^2\geqslant 0$ per ogni possibile numero x, e quindi

$$x^2 + 1 \ge 1$$

e quindi $x^2 + 1$ non potrà mai essere zero.

Teorema

Un'equazione della forma

$$ax^2 = c$$

non è risolubile se a e c sono non nulli e discordi, ossia se ac < 0.

Un'equazione di secondo grado potrebbe non ammettere soluzione. Per esempio, l'equazione

$$x^2 + 1 = 0$$

non può ammettere soluzione. Infatti $x^2\geqslant 0$ per ogni possibile numero x, e quindi

$$x^2 + 1 \ge 1$$

e quindi $x^2 + 1$ non potrà mai essere zero.

Teorema

Un'equazione della forma

$$ax^2 = c$$

non è risolubile se a e c sono non nulli e discordi, ossia se ac < 0.

Un'equazione di secondo grado potrebbe non ammettere soluzione. Per esempio, l'equazione

$$x^2 + 1 = 0$$

non può ammettere soluzione. Infatti $x^2\geqslant 0$ per ogni possibile numero x, e quindi

$$x^2 + 1 \ge 1$$

e quindi $x^2 + 1$ non potrà mai essere zero.

Teorema

Un'equazione della forma

$$ax^2 = c$$

non è risolubile se a e c sono non nulli e discordi, ossia se ac < 0.

Dimostrazione. Supponiamo per assurdo che x sia una soluzione. Moltiplicando ambo i membri per a (che non è zero), risulta

Un'equazione di secondo grado potrebbe non ammettere soluzione. Per esempio, l'equazione

$$x^2 + 1 = 0$$

non può ammettere soluzione. Infatti $x^2\geqslant 0$ per ogni possibile numero x, e quindi

$$x^2 + 1 \ge 1$$

e quindi $x^2 + 1$ non potrà mai essere zero.

Teorema

Un'equazione della forma

$$ax^2 = c$$

non è risolubile se a e c sono non nulli e discordi, ossia se ac < 0.

Dimostrazione. Supponiamo per assurdo che x sia una soluzione. Moltiplicando ambo i membri per a (che non è zero), risulta

$$a^2x^2 = ac$$

Un'equazione di secondo grado potrebbe non ammettere soluzione. Per esempio, l'equazione

$$x^2 + 1 = 0$$

non può ammettere soluzione. Infatti $x^2\geqslant 0$ per ogni possibile numero x, e quindi

$$x^2 + 1 \ge 1$$

e quindi $x^2 + 1$ non potrà mai essere zero.

Teorema

Un'equazione della forma

$$ax^2 = c$$

non è risolubile se a e c sono non nulli e discordi, ossia se ac < 0.

Dimostrazione. Supponiamo per assurdo che x sia una soluzione. Moltiplicando ambo i membri per a (che non è zero), risulta

$$a^2x^2 = ac.$$

Ora, a^2x^2 è un quadrato e quindi sempre positivo, mentre ac è per ipotesi negativo, il che è assurdo perché i due numeri dovrebbero essere uguali.

Un'equazione di secondo grado potrebbe non ammettere soluzione. Per esempio, l'equazione

$$x^2 + 1 = 0$$

non può ammettere soluzione. Infatti $x^2\geqslant 0$ per ogni possibile numero x, e quindi

$$x^2 + 1 \ge 1$$

e quindi $x^2 + 1$ non potrà mai essere zero.

Teorema

Un'equazione della forma

$$ax^2 = c$$

non è risolubile se a e c sono non nulli e discordi, ossia se ac < 0.

Dimostrazione. Supponiamo per assurdo che x sia una soluzione. Moltiplicando ambo i membri per a (che non è zero), risulta

$$a^2x^2 = ac.$$

Ora, a^2x^2 è un quadrato e quindi sempre positivo, mentre ac è per ipotesi negativo, il che è assurdo perché i due numeri dovrebbero essere uguali.

(c) 2009-2010 Nuova Secondaria EDITRICE LA SCUOLA

Risolviamo ora l'equazione completa

$$ax^2 + bx + c = 0$$
 $(a \neq 0)$.

$$ax^2 + bx + c = 0$$
 $(a \neq 0)$.

Equazioni complete

Poniamo

$$y=x+\frac{b}{2a}.$$

Equazioni complete

$$ax^2 + bx + c = 0$$
 $(a \neq 0)$.

Poniamo

$$y = x + \frac{b}{2a}.$$

$$ax^2 + bx + c = 0$$
 $(a \neq 0)$.

$$y=x+\frac{b}{2a}.$$

$$ay^2 =$$

$$ax^2 + bx + c = 0 \qquad (a \neq 0).$$

$$y=x+\frac{b}{2a}.$$

$$ay^2 = a\left(x^2 + \frac{bx}{a} + \frac{b^2}{4a^2}\right) =$$

Risolviamo ora l'equazione completa

$$ax^2 + bx + c = 0 \qquad (a \neq 0).$$

Poniamo

$$y=x+\frac{b}{2a}.$$

$$ay^2 = a\left(x^2 + \frac{bx}{a} + \frac{b^2}{4a^2}\right) = ax^2 + bx + \frac{b^2}{4a}$$

Equazioni complete

$$ax^2 + bx + c = 0$$
 $(a \neq 0)$.

Poniamo

$$y=x+\frac{b}{2a}.$$

Allora

$$ay^2 = a\left(x^2 + \frac{bx}{a} + \frac{b^2}{4a^2}\right) = ax^2 + bx + \frac{b^2}{4a}$$

Ma dall'equazione abbiamo che $ax^2 + bx = -c$, per cui

$$ax^2 + bx + c = 0$$
 $(a \neq 0)$.

Richiami

$$y=x+\frac{b}{2a}.$$

Allora

$$ay^2 = a\left(x^2 + \frac{bx}{a} + \frac{b^2}{4a^2}\right) = ax^2 + bx + \frac{b^2}{4a}$$

Ma dall'equazione abbiamo che $ax^2 + bx = -c$, per cui

$$ay^2 = \frac{b^2}{4a} - c = \frac{b^2 - 4ac}{4a}.$$

$$ax^2 + bx + c = 0 \qquad (a \neq 0).$$

Richiami

$$y=x+\frac{b}{2a}.$$

Allora

$$ay^2 = a\left(x^2 + \frac{bx}{a} + \frac{b^2}{4a^2}\right) = ax^2 + bx + \frac{b^2}{4a}$$

Ma dall'equazione abbiamo che $ax^2 + bx = -c$, per cui

$$ay^2 = \frac{b^2}{4a} - c = \frac{b^2 - 4ac}{4a}$$
.

Quindi ci siamo ricondotti ad un'equazione pura, che, divisa per a (che non è nullo), dà

$$ax^2 + bx + c = 0$$
 $(a \neq 0)$.

Richiami

$$y=x+\frac{b}{2a}.$$

Allora

$$ay^2 = a\left(x^2 + \frac{bx}{a} + \frac{b^2}{4a^2}\right) = ax^2 + bx + \frac{b^2}{4a}$$

Ma dall'equazione abbiamo che $ax^2 + bx = -c$, per cui

$$ay^2 = \frac{b^2}{4a} - c = \frac{b^2 - 4ac}{4a}$$
.

Quindi ci siamo ricondotti ad un'equazione pura, che, divisa per a (che non è nullo), dà

$$y^2 = \frac{b^2 - 4ac}{4a^2}$$
.

$$b^2 - 4ac \geqslant 0$$

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y=-\frac{\sqrt{b^2-4ac}}{2a},$$

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y = -\frac{\sqrt{b^2 - 4ac}}{2a}, \qquad y = \frac{\sqrt{b^2 - 4ac}}{2a}.$$

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y = -\frac{\sqrt{b^2 - 4ac}}{2a}, \qquad y = \frac{\sqrt{b^2 - 4ac}}{2a}.$$

(Notiamo che le formule valgono anche se a < 0, perché in quel caso la prima soluzione è positiva e la seconda negativa).

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y = -\frac{\sqrt{b^2 - 4ac}}{2a}, \qquad y = \frac{\sqrt{b^2 - 4ac}}{2a}.$$

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y=-\frac{\sqrt{b^2-4ac}}{2a}, \qquad y=\frac{\sqrt{b^2-4ac}}{2a}.$$

$$x = y - \frac{b}{2a} =$$

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y = -\frac{\sqrt{b^2 - 4ac}}{2a}, \qquad y = \frac{\sqrt{b^2 - 4ac}}{2a}.$$

$$x = y - \frac{b}{2a} = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} =$$

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y = -\frac{\sqrt{b^2 - 4ac}}{2a}, \qquad y = \frac{\sqrt{b^2 - 4ac}}{2a}.$$

$$x = y - \frac{b}{2a} = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y = -\frac{\sqrt{b^2 - 4ac}}{2a}, \qquad y = \frac{\sqrt{b^2 - 4ac}}{2a}.$$

(Notiamo che le formule valgono anche se a < 0, perché in quel caso la prima soluzione è positiva e la seconda negativa). Tornando a x, abbiamo ora che le soluzioni in x sono date da

$$x = y - \frac{b}{2a} = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y=-\frac{\sqrt{b^2-4ac}}{2a}, \qquad y=\frac{\sqrt{b^2-4ac}}{2a}.$$

(Notiamo che le formule valgono anche se a < 0, perché in quel caso la prima soluzione è positiva e la seconda negativa). Tornando a x, abbiamo ora che le soluzioni in x sono date da

$$x = y - \frac{b}{2a} = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$x = y + \frac{b}{2a} =$$

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y = -\frac{\sqrt{b^2 - 4ac}}{2a}, \qquad y = \frac{\sqrt{b^2 - 4ac}}{2a}.$$

(Notiamo che le formule valgono anche se a < 0, perché in quel caso la prima soluzione è positiva e la seconda negativa). Tornando a x, abbiamo ora che le soluzioni in x sono date da

$$x = y - \frac{b}{2a} = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$x = y + \frac{b}{2a} = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} =$$

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y=-\frac{\sqrt{b^2-4ac}}{2a}, \qquad y=\frac{\sqrt{b^2-4ac}}{2a}.$$

(Notiamo che le formule valgono anche se a < 0, perché in quel caso la prima soluzione è positiva e la seconda negativa). Tornando a x, abbiamo ora che le soluzioni in x sono date da

$$x = y - \frac{b}{2a} = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$x = y + \frac{b}{2a} = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}.$$

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y=-\frac{\sqrt{b^2-4ac}}{2a}, \qquad y=\frac{\sqrt{b^2-4ac}}{2a}.$$

(Notiamo che le formule valgono anche se a < 0, perché in quel caso la prima soluzione è positiva e la seconda negativa). Tornando a x, abbiamo ora che le soluzioni in x sono date da

$$x = y - \frac{b}{2a} = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x = y + \frac{b}{2a} = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}.$$

Queste due soluzioni si scrivono spesso in forma compatta

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y=-\frac{\sqrt{b^2-4ac}}{2a}, \qquad y=\frac{\sqrt{b^2-4ac}}{2a}.$$

(Notiamo che le formule valgono anche se a < 0, perché in quel caso la prima soluzione è positiva e la seconda negativa). Tornando a x, abbiamo ora che le soluzioni in x sono date da

$$x = y - \frac{b}{2a} = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x = y + \frac{b}{2a} = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}.$$

Queste due soluzioni si scrivono spesso in forma compatta

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
.

$$\Delta = b^2 - 4ac.$$

$$\Delta = b^2 - 4ac.$$

Infatti, se $\Delta <$ 0, l'equazione

$$\Delta = b^2 - 4ac.$$

Infatti, se $\Delta < 0$, l'equazione

$$y^2 = \frac{b^2 - 4ac}{4a^2} = \frac{\Delta}{4a^2}$$

non può avere soluzioni, per quanto osservato in precedenza.

$$\Delta = b^2 - 4ac.$$

Infatti, se $\Delta < 0$, l'equazione

Richiami

$$y^2 = \frac{b^2 - 4ac}{4a^2} = \frac{\Delta}{4a^2}$$

non può avere soluzioni, per quanto osservato in precedenza. Se infine $\Delta=0$, allora necessariamente y=0 e quindi x=-b/2a è l'unica soluzione dell'equazione.

$$\Delta = b^2 - 4ac.$$

Infatti, se $\Delta < 0$, l'equazione

$$y^2 = \frac{b^2 - 4ac}{4a^2} = \frac{\Delta}{4a^2}$$

non può avere soluzioni, per quanto osservato in precedenza.

Se infine $\Delta = 0$, allora necessariamente y = 0 e quindi x = -b/2a è l'unica soluzione dell'equazione.

Osserviamo ora che non vi possono essere altre soluzioni oltre quelle date.

$$\Delta = b^2 - 4ac.$$

Infatti, se $\Delta < 0$, l'equazione

Richiami

$$y^2 = \frac{b^2 - 4ac}{4a^2} = \frac{\Delta}{4a^2}$$

non può avere soluzioni, per quanto osservato in precedenza.

Se infine $\Delta = 0$, allora necessariamente y = 0 e quindi x = -b/2a è l'unica soluzione dell'equazione.

Osserviamo ora che *non vi possono essere altre soluzioni oltre quelle date*. Infatti, è chiaro che x è soluzione dell'equazione data se e solo se y è soluzione dell'equazione sopra scritta.

$$\Delta = b^2 - 4ac.$$

Infatti, se $\Delta < 0$, l'equazione

Richiami

$$y^2 = \frac{b^2 - 4ac}{4a^2} = \frac{\Delta}{4a^2}$$

non può avere soluzioni, per quanto osservato in precedenza.

Se infine $\Delta = 0$, allora necessariamente y = 0 e quindi x = -b/2a è l'unica soluzione dell'equazione.

Osserviamo ora che *non vi possono essere altre soluzioni oltre quelle date*. Infatti, è chiaro che x è soluzione dell'equazione data se e solo se y è soluzione dell'equazione sopra scritta. Quindi, se $\Delta < 0$ non vi sono soluzioni,

$$\Delta = b^2 - 4ac.$$

Infatti, se $\Delta < 0$, l'equazione

Richiami

$$y^2 = \frac{b^2 - 4ac}{4a^2} = \frac{\Delta}{4a^2}$$

non può avere soluzioni, per quanto osservato in precedenza.

Se infine $\Delta = 0$, allora necessariamente y = 0 e quindi x = -b/2a è l'unica soluzione dell'equazione.

Osserviamo ora che *non vi possono essere altre soluzioni oltre quelle date*. Infatti, è chiaro che x è soluzione dell'equazione data se e solo se y è soluzione dell'equazione sopra scritta. Quindi, se $\Delta < 0$ non vi sono soluzioni, se $\Delta = 0$ vi è solo la soluzione y = 0.

$$\Delta = b^2 - 4ac.$$

Infatti, se $\Delta < 0$, l'equazione

$$y^2 = \frac{b^2 - 4ac}{4a^2} = \frac{\Delta}{4a^2}$$

non può avere soluzioni, per quanto osservato in precedenza.

Se infine $\Delta = 0$, allora necessariamente y = 0 e quindi x = -b/2a è l'unica soluzione dell'equazione.

Osserviamo ora che non vi possono essere altre soluzioni oltre quelle date. Infatti, è chiaro che x è soluzione dell'equazione data se e solo se y è soluzione dell'equazione sopra scritta. Quindi, se $\Delta < 0$ non vi sono soluzioni, se $\Delta = 0$ vi è solo la soluzione y = 0, mentre se $\Delta > 0$ vi sono solo le due soluzioni date, in quanto vi sono solo due numeri aventi per quadrato un dato numero.

Teorema

Data un'equazione di secondo grado nella forma

Teorema

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

Teorema

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che, posto $\Delta = b^2 - 4ac$

 \bullet se $\Delta > 0$ l'equazione ammette due soluzioni date da

Teorema

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che, posto $\Delta = b^2 - 4ac$

ullet se $\Delta > 0$ l'equazione ammette due soluzioni date da

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a};$$

Teorema

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che, posto $\Delta = b^2 - 4ac$

 $oldsymbol{0}$ se $\Delta > 0$ l'equazione ammette due soluzioni date da

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a};$$

 $oldsymbol{Q}$ se $\Delta=0$, l'equazione ammette una sola soluzione data da

Teorema

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che, posto $\Delta = b^2 - 4ac$

 \bullet se $\Delta > 0$ l'equazione ammette due soluzioni date da

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a};$$

 $oldsymbol{Q}$ se $\Delta=0$, l'equazione ammette una sola soluzione data da

$$x=-\frac{b}{2a}$$
;

Teorema

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che, posto $\Delta = b^2 - 4ac$

 \bullet se $\Delta > 0$ l'equazione ammette due soluzioni date da

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a};$$

2 se $\Delta = 0$, l'equazione ammette una sola soluzione data da

$$x=-\frac{b}{2a}$$
;

 \bullet se $\Delta < 0$, l'equazione non ammette soluzioni.

Se $\Delta = 0$, le due espressioni

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

coincidono.

Se $\Delta = 0$, le due espressioni

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

coincidono. Per questo motivo spesso si dice che se $\Delta=0$ si hanno "due soluzioni coincidenti".

Se $\Delta = 0$, le due espressioni

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

Richiami

$$x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

coincidono. Per questo motivo spesso si dice che se $\Delta=0$ si hanno "due soluzioni coincidenti". Questa strana locuzione ha un suo significato geometrico che apparirà chiaro in Geometria Analitica.

Somma e prodotto di soluzioni

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} =$$

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = = -\frac{d}{a} \pm \frac{\sqrt{4d^2 - 4ac}}{2a} =$$

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = = -\frac{d}{a} \pm \frac{\sqrt{4d^2 - 4ac}}{2a} = = -\frac{d \pm \sqrt{d^2 - ac}}{a}$$

Se in un'equazione di secondo grado si ha b=2d, la formula risolutiva diventa

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = = -\frac{d}{a} \pm \frac{\sqrt{4d^2 - 4ac}}{2a} = = -\frac{d \pm \sqrt{d^2 - ac}}{a}$$

che viene detta formula ridotta ed è comoda quando b è pari, cosicché d è intero.

Se in un'equazione di secondo grado si ha b=2d, la formula risolutiva diventa

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = = -\frac{d}{a} \pm \frac{\sqrt{4d^2 - 4ac}}{2a} = = -\frac{d \pm \sqrt{d^2 - ac}}{a}$$

che viene detta formula ridotta ed è comoda quando b è pari, cosicché d è intero.

Se infine si ha anche a=1 (cosa che in teoria è sempre possibile avere, a costo però di trovare eventualmente altri coefficienti frazionari), e b=-2p l'equazione assume la forma

Se in un'equazione di secondo grado si ha b=2d, la formula risolutiva diventa

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = = -\frac{d}{a} \pm \frac{\sqrt{4d^2 - 4ac}}{2a} = = -\frac{d \pm \sqrt{d^2 - ac}}{a}$$

che viene detta formula ridotta ed è comoda quando b è pari, cosicché d è intero.

Se infine si ha anche a=1 (cosa che in teoria è sempre possibile avere, a costo però di trovare eventualmente altri coefficienti frazionari), e b=-2p l'equazione assume la forma

$$x^2 - 2px + q = 0$$

Se in un'equazione di secondo grado si ha b=2d, la formula risolutiva diventa

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = \\ = -\frac{d}{a} \pm \frac{\sqrt{4d^2 - 4ac}}{2a} = \\ = -\frac{d \pm \sqrt{d^2 - ac}}{a}$$

che viene detta formula ridotta ed è comoda quando b è pari, cosicché d è intero.

Se infine si ha anche a=1 (cosa che in teoria è sempre possibile avere, a costo però di trovare eventualmente altri coefficienti frazionari), e b=-2p l'equazione assume la forma

$$x^2 - 2px + q = 0$$

e la formula diventa

Se in un'equazione di secondo grado si ha b=2d, la formula risolutiva diventa

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = \\ = -\frac{d}{a} \pm \frac{\sqrt{4d^2 - 4ac}}{2a} = \\ = -\frac{d \pm \sqrt{d^2 - ac}}{a}$$

che viene detta formula ridotta ed è comoda quando b è pari, cosicché d è intero.

Se infine si ha anche a=1 (cosa che in teoria è sempre possibile avere, a costo però di trovare eventualmente altri coefficienti frazionari), e b=-2p l'equazione assume la forma

$$x^2 - 2px + q = 0$$

e la formula diventa

$$x_{1,2} = p \pm \sqrt{p^2 - q}$$
.

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} =$$

Se sommiamo le due espressioni

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2=-\frac{b}{2a}+\frac{\sqrt{b^2-4ac}}{2a}=$$

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

Abbiamo quindi dimostrato che

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

Abbiamo quindi dimostrato che

Somma delle soluzioni di un'equazione di secondo grado

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

Abbiamo quindi dimostrato che

Somma delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

Abbiamo quindi dimostrato che

Somma delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

Abbiamo quindi dimostrato che

Somma delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che la somma delle soluzioni è data da

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

Abbiamo quindi dimostrato che

Somma delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che la somma delle soluzioni è data da

$$x_1 + x_2 = -\frac{b}{a}$$
.

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

Abbiamo quindi dimostrato che

Somma delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che la somma delle soluzioni è data da

$$x_1 + x_2 = -\frac{b}{a}$$
.

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

$$a(x_1 + x_2)^2 = ax_1^2 + 2ax_1x_2 + ax_2^2.$$

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

$$a(x_1+x_2)^2=ax_1^2+2ax_1x_2+ax_2^2.$$

Equazioni complete

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

$$a(x_1+x_2)^2=ax_1^2+2ax_1x_2+ax_2^2.$$

$$ax_1^2 = -bx_1 - c$$

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

$$a(x_1+x_2)^2=ax_1^2+2ax_1x_2+ax_2^2.$$

$$ax_1^2 = -bx_1 - c \qquad e$$

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

$$a(x_1 + x_2)^2 = ax_1^2 + 2ax_1x_2 + ax_2^2$$
.

$$ax_1^2 = -bx_1 - c$$
 e $ax_2^2 = -bx_2 - c$,

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

$$a(x_1+x_2)^2=ax_1^2+2ax_1x_2+ax_2^2.$$

Ora, poiché x_1 e x_2 sono soluzioni, si deve avere

$$ax_1^2 = -bx_1 - c$$
 e $ax_2^2 = -bx_2 - c$,

per cui

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

$$a(x_1+x_2)^2=ax_1^2+2ax_1x_2+ax_2^2.$$

Ora, poiché x_1 e x_2 sono soluzioni, si deve avere

$$ax_1^2 = -bx_1 - c$$
 e $ax_2^2 = -bx_2 - c$,

per cui

Richiami

$$a(x_1+x_2)^2=-b(x_1+x_2)-2c+2ax_1x_2.$$

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

$$a(x_1+x_2)^2=ax_1^2+2ax_1x_2+ax_2^2.$$

Ora, poiché x_1 e x_2 sono soluzioni, si deve avere

$$ax_1^2 = -bx_1 - c$$
 e $ax_2^2 = -bx_2 - c$,

per cui

Richiami

$$a(x_1+x_2)^2=-b(x_1+x_2)-2c+2ax_1x_2.$$

Sostituendo a $x_1 + x_2$ il valore -b/a appena trovato abbiamo

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

$$a(x_1+x_2)^2=ax_1^2+2ax_1x_2+ax_2^2.$$

Ora, poiché x_1 e x_2 sono soluzioni, si deve avere

$$ax_1^2 = -bx_1 - c$$
 e $ax_2^2 = -bx_2 - c$,

per cui

Richiami

$$a(x_1+x_2)^2=-b(x_1+x_2)-2c+2ax_1x_2.$$

Sostituendo a $x_1 + x_2$ il valore -b/a appena trovato abbiamo

$$\frac{b^2}{a} = \frac{b^2}{a} - 2c + 2ax_1x_2$$

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

$$a(x_1+x_2)^2=ax_1^2+2ax_1x_2+ax_2^2.$$

Ora, poiché x_1 e x_2 sono soluzioni, si deve avere

$$ax_1^2 = -bx_1 - c$$
 e $ax_2^2 = -bx_2 - c$,

per cui

$$a(x_1+x_2)^2=-b(x_1+x_2)-2c+2ax_1x_2.$$

Sostituendo a $x_1 + x_2$ il valore -b/a appena trovato abbiamo

$$\frac{b^2}{a} = \frac{b^2}{a} - 2c + 2ax_1x_2$$

e pertanto

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

$$a(x_1+x_2)^2=ax_1^2+2ax_1x_2+ax_2^2.$$

Ora, poiché x_1 e x_2 sono soluzioni, si deve avere

$$ax_1^2 = -bx_1 - c$$
 e $ax_2^2 = -bx_2 - c$,

per cui

Richiami

$$a(x_1+x_2)^2=-b(x_1+x_2)-2c+2ax_1x_2.$$

Sostituendo a $x_1 + x_2$ il valore -b/a appena trovato abbiamo

$$\frac{b^2}{a} = \frac{b^2}{a} - 2c + 2ax_1x_2$$

e pertanto

$$x_1x_2 = \frac{c}{2}$$
.

Prodotto delle soluzioni di un'equazione di secondo grado

Prodotto delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

Prodotto delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

Prodotto delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che il prodotto delle soluzioni è dato da

Prodotto delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che il prodotto delle soluzioni è dato da

$$x_1x_2=\frac{c}{a}$$
.

Prodotto delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che il prodotto delle soluzioni è dato da

$$x_1x_2=\frac{c}{a}$$
.

La regola di Cartesio

Prendiamo un'equazione completa

La regola di Cartesio

Prendiamo un'equazione completa

$$ax^2 + bx + c = 0$$

La regola di Cartesio

Prendiamo un'equazione completa

$$ax^2 + bx + c = 0$$

e dividiamola per a, ottenendo

Prendiamo un'equazione completa

$$ax^2 + bx + c = 0$$

e dividiamola per a, ottenendo

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0.$$

La regola di Cartesio

Prendiamo un'equazione completa

$$ax^2 + bx + c = 0$$

e dividiamola per a, ottenendo

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0.$$

Indicando con s la somma delle soluzioni e con p il loro prodotto, possiamo anche scrivere, in virtù di quanto detto sopra,

Prendiamo un'equazione completa

$$ax^2 + bx + c = 0$$

e dividiamola per a, ottenendo

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0.$$

Indicando con s la somma delle soluzioni e con p il loro prodotto, possiamo anche scrivere, in virtù di quanto detto sopra,

$$x^2 - sx + p = 0$$
.

La regola di Cartesio

Prendiamo un'equazione completa

$$ax^2 + bx + c = 0$$

e dividiamola per a, ottenendo

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0.$$

Indicando con s la somma delle soluzioni e con p il loro prodotto, possiamo anche scrivere, in virtù di quanto detto sopra.

$$x^2 - sx + p = 0.$$

Adesso supponiamo che l'equazione sia risolubile e osserviamo che

• Se p > 0, le soluzioni sono concordi in segno;

• Se p > 0, le soluzioni sono concordi in segno; il loro segno sarà quindi quello della somma.

- Se p > 0, le soluzioni sono concordi in segno; il loro segno sarà quindi quello della somma.
- Se p < 0, le soluzioni sono discordi in segno;

 Se p > 0, le soluzioni sono concordi in segno; il loro segno sarà quindi quello della somma.

Richiami

 Se p < 0, le soluzioni sono discordi in segno; il segno di quella maggiore in valore assoluto sarà il segno della somma.

- Se p > 0, le soluzioni sono concordi in segno; il loro segno sarà quindi quello della somma.
- Se p < 0, le soluzioni sono discordi in segno; il segno di quella maggiore in valore assoluto sarà il segno della somma.

Richiami

- Se p > 0, le soluzioni sono concordi in segno; il loro segno sarà quindi quello della somma.
- Se p < 0, le soluzioni sono discordi in segno; il segno di quella maggiore in valore assoluto sarà il segno della somma.

Richiami

• se s > 0, i coefficienti dell'equazione hanno segni + + + oppure - - - (a seconda del segno di a)

- Se p > 0, le soluzioni sono concordi in segno; il loro segno sarà quindi quello della somma.
- Se p < 0, le soluzioni sono discordi in segno; il segno di quella maggiore in valore assoluto sarà il segno della somma.

Richiami

- se s > 0, i coefficienti dell'equazione hanno segni + + + oppure - (a seconda del segno di a)
- se s < 0, i coefficienti dell'equazione hanno segni + + oppure + (a seconda del segno di a).

- Se p > 0, le soluzioni sono concordi in segno; il loro segno sarà quindi quello della somma.
- Se p < 0, le soluzioni sono discordi in segno; il segno di quella maggiore in valore assoluto sarà il segno della somma.

Richiami

- se s > 0, i coefficienti dell'equazione hanno segni + + + oppure - (a seconda del segno di a)
- se s < 0, i coefficienti dell'equazione hanno segni + + oppure + (a seconda del segno di a).

Nel secondo caso, invece, i coefficienti dell'equazione hanno segni + + - oppure + - -.

Possiamo pertanto chiamare permanenza di segno ogni coppia ++ o -- di segni consecutivi nell'equazione e variazione ogni coppia +- o -+.

Possiamo pertanto chiamare permanenza di segno ogni coppia ++ o

- - di segni consecutivi nell'equazione e variazione ogni coppia + o
- -+. Per esempio,

Richiami

Equazioni complete

Possiamo pertanto chiamare permanenza di segno ogni coppia ++ o

- - di segni consecutivi nell'equazione e $\emph{variazione}$ ogni coppia + o
- -+. Per esempio,
 - l'equazione $-2x^2 + x 1 = 0$ ha due variazioni

Equazioni complete

Possiamo pertanto chiamare permanenza di segno ogni coppia + + o- di segni consecutivi nell'equazione e variazione ogni coppia + o -+. Per esempio.

• l'equazione
$$-2x^2 + x - 1 = 0$$
 ha due variazioni $(-+-)$

Richiami

Possiamo pertanto chiamare permanenza di segno ogni coppia ++ o

- - di segni consecutivi nell'equazione e $\emph{variazione}$ ogni coppia + o
- +. Per esempio,
 - l'equazione $-2x^2 + x 1 = 0$ ha due variazioni $(\underbrace{-+-}_{V})$
 - l'equazione $4x^2 9x + 2 = 0$ ha due variazioni

Possiamo pertanto chiamare permanenza di segno ogni coppia + + o- di segni consecutivi nell'equazione e variazione ogni coppia + - o -+. Per esempio.

- l'equazione $-2x^2 + x 1 = 0$ ha due variazioni $(\underbrace{-+-}_{V})$
- l'equazione $4x^2 9x + 2 = 0$ ha due variazioni (+ +)

Equazioni complete

Possiamo pertanto chiamare *permanenza* di segno ogni coppia + + o - - di segni consecutivi nell'equazione e *variazione* ogni coppia + - o - +. Per esempio,

- l'equazione $-2x^2 + x 1 = 0$ ha due variazioni $(\underbrace{-+-}_{V})$
- l'equazione $4x^2 9x + 2 = 0$ ha due variazioni (+ +)
- l'equazione $x^2 + x 1 = 0$ ha una variazione e una permanenza

Possiamo pertanto chiamare permanenza di segno ogni coppia + + o- di segni consecutivi nell'equazione e variazione ogni coppia + - o -+. Per esempio.

- l'equazione $-2x^2 + x 1 = 0$ ha due variazioni (-+-)
- l'equazione $4x^2 9x + 2 = 0$ ha due variazioni (+ +)
- l'equazione $x^2 + x 1 = 0$ ha una variazione e una permanenza

Possiamo pertanto chiamare permanenza di segno ogni coppia ++ o -- di segni consecutivi nell'equazione e variazione ogni coppia +- o -+. Per esempio,

- l'equazione $-2x^2 + x 1 = 0$ ha due variazioni $(\underbrace{-+-}_{V})$
- l'equazione $4x^2 9x + 2 = 0$ ha due variazioni (+ +)
- l'equazione $x^2+x-1=0$ ha una variazione e una permanenza $(\underbrace{+}_{0}+\underbrace{-}_{0})$
- l'equazione $3x^2 + x + 2 = 0$ ha due permanenze

Possiamo pertanto chiamare permanenza di segno ogni coppia ++ o -- di segni consecutivi nell'equazione e variazione ogni coppia +- o -+. Per esempio,

- l'equazione $-2x^2 + x 1 = 0$ ha due variazioni $(\underbrace{-+-}_{V})$
- l'equazione $4x^2 9x + 2 = 0$ ha due variazioni (+ +)
- l'equazione $x^2+x-1=0$ ha una variazione e una permanenza $(\underbrace{+\ +\ -})$
- l'equazione $3x^2 + x + 2 = 0$ ha due permanenze (+ + +)

Possiamo pertanto chiamare permanenza di segno ogni coppia ++ o -- di segni consecutivi nell'equazione e variazione ogni coppia +- o -+. Per esempio,

- l'equazione $-2x^2 + x 1 = 0$ ha due variazioni $(\underbrace{-+-}_{V})$
- l'equazione $4x^2 9x + 2 = 0$ ha due variazioni (+ +)
- l'equazione $x^2+x-1=0$ ha una variazione e una permanenza $(\underbrace{+\ +\ -})$
- l'equazione $3x^2 + x + 2 = 0$ ha due permanenze (+ + +)

La nostra analisi ci ha condotto alla seguente tabella

2 variazioni
$$+ - + \text{ opp. } - + -$$
:

2 variazioni
$$+ - + \text{ opp. } - + -$$
: 2 sol. positive

2 permanenze
$$+ + + \text{ opp. } - - -$$
:

La nostra analisi ci ha condotto alla seguente tabella

2 variazioni
$$+ - + \text{ opp. } - + -:$$
 2 sol. positive

2 permanenze + + + opp. - - - : 2 sol. negative

$$+ - - \text{ opp. } - + +$$

1 var. e 1 perm. +-- opp. -++: 1 sol. pos. e una neg.

Equazioni complete

Equazioni complete

2 variazioni
$$+ - + \text{ opp. } - + -:$$
 2 sol. positive

2 permanenze + + + opp. - - - : 2 sol. negative

1 var. e 1 perm. + - opp. - + + 1 sol. pos. e una neg.

1 perm. e 1 var.
$$++-$$
 opp. $--+$: 1 sol. pos. e una neg.

La nostra analisi ci ha condotto alla seguente tabella

(negli ultimi due casi, la soluzione maggiore in valore assoluto è quella che corrisponde alla prima delle occorrenze (variazione o permanenza)).

Richiami

```
2 variazioni + - + \text{ opp. } - + -: 2 sol. positive
2 permanenze + + + \text{ opp. } - - - : 2 sol. negative
1 var. e 1 perm. + - - \text{ opp. } - + +: 1 sol. pos. e una neg.
1 perm. e 1 var. + + - \text{ opp. } - - +: 1 sol. pos. e una neg.
```

(negli ultimi due casi, la soluzione maggiore in valore assoluto è quella che corrisponde alla prima delle occorrenze (variazione o permanenza)).

Questa regola è nota come regola di Cartesio:

Richiami

(negli ultimi due casi, la soluzione maggiore in valore assoluto è quella che corrisponde alla prima delle occorrenze (variazione o permanenza)).

Questa regola è nota come regola di Cartesio: ad ogni variazione è associata una radice positiva, e ad ogni permanenza una negativa, la maggiore in valore assoluto associata alla prima delle due.

Parte III

percorso approfondito

- Richiami
- Equazioni fattorizzabili
- Equazioni non risolubili
- Equazioni complete
- Somma e prodotto
- 15 Differenza e rapporto
- 16 Risoluzione geometrica

$$ax^2 + bx + c = 0$$

$$ax^2 + bx + c = 0$$

dove a, b, c sono numeri reali e $a \neq 0$.

$$ax^2 + bx + c = 0$$

dove a, b, c sono numeri reali e $a \neq 0$. Quindi

•
$$x^2 + x - 1 = 0$$
 è un'equazione di secondo grado;

$$ax^2 + bx + c = 0$$

dove a, b, c sono numeri reali e $a \neq 0$. Quindi

- $x^2 + x 1 = 0$ è un'equazione di secondo grado;
- $-2x^2 + x = 0$ è un'equazione di secondo grado;

In questa lezione vedremo come risolvere la generica equazione di secondo grado

$$ax^2 + bx + c = 0$$

dove a, b, c sono numeri reali e $a \neq 0$. Quindi

- $x^2 + x 1 = 0$ è un'equazione di secondo grado;
- $-2x^2 + x = 0$ è un'equazione di secondo grado;
- $x^2 + (\sqrt{2} 1)x + 1 = 0$ è un'equazione di secondo grado;

In questa lezione vedremo come risolvere la generica equazione di secondo grado

$$ax^2 + bx + c = 0$$

dove a, b, c sono numeri reali e $a \neq 0$. Quindi

- $x^2 + x 1 = 0$ è un'equazione di secondo grado;
- $-2x^2 + x = 0$ è un'equazione di secondo grado;
- $x^2 + (\sqrt{2} 1)x + 1 = 0$ è un'equazione di secondo grado;
- 2x + 1 = 0 non è un'equazione di secondo grado;

In questa lezione vedremo come risolvere la generica equazione di secondo grado

$$ax^2 + bx + c = 0$$

dove a, b, c sono numeri reali e $a \neq 0$. Quindi

- $x^2 + x 1 = 0$ è un'equazione di secondo grado;
- $-2x^2 + x = 0$ è un'equazione di secondo grado;
- $x^2 + (\sqrt{2} 1)x + 1 = 0$ è un'equazione di secondo grado;
- 2x + 1 = 0 non è un'equazione di secondo grado;
- $x^3 + x^2 = 1$ non è un'equazione di secondo grado.

(c) 2009-2010 Nuova Secondaria EDITRICE LA SCUOLA

Ricordiamo una importante proprietà dei numeri.

Legge di annullamento del prodotto

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

In simboli, possiamo scrivere

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

In simboli, possiamo scrivere

$$a \cdot b = 0$$

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

In simboli, possiamo scrivere

$$a \cdot b = 0 \iff a = 0 \lor b = 0,$$

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

In simboli, possiamo scrivere

$$a \cdot b = 0 \iff a = 0 \lor b = 0,$$

o, più generalmente,

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

In simboli, possiamo scrivere

$$a \cdot b = 0 \iff a = 0 \lor b = 0,$$

o, più generalmente,

$$a \cdot b \cdot c \cdot \ldots \cdot z = 0$$
 \iff $a = 0 \lor b = 0 \lor c = 0 \lor \ldots \lor z = 0.$

Questo teorema permette di risolvere equazioni fattorizzate, ossia del tipo

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

In simboli, possiamo scrivere

$$a \cdot b = 0 \iff a = 0 \lor b = 0,$$

o, più generalmente,

$$a \cdot b \cdot c \cdot \ldots \cdot z = 0$$
 \iff $a = 0 \lor b = 0 \lor c = 0 \lor \ldots \lor z = 0.$

Questo teorema permette di risolvere equazioni fattorizzate, ossia del tipo

$$P_1(x) \cdot P_2(x) \cdot \ldots \cdot P_n(x) = 0.$$

Legge di annullamento del prodotto

Un prodotto di numeri reali è zero solo e soltanto quando almeno uno dei numeri è zero.

In simboli, possiamo scrivere

$$a \cdot b = 0 \iff a = 0 \lor b = 0,$$

o, più generalmente,

$$a \cdot b \cdot c \cdot \ldots \cdot z = 0$$
 \iff $a = 0 \lor b = 0 \lor c = 0 \lor \ldots \lor z = 0.$

Questo teorema permette di risolvere equazioni fattorizzate, ossia del tipo

$$P_1(x) \cdot P_2(x) \cdot \ldots \cdot P_n(x) = 0.$$

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

$$x + 1 = 0$$
.

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

$$x + 1 = 0,$$
 $x - 3 = 0,$

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

$$x + 1 = 0$$
, $x - 3 = 0$, $5x + 7 = 0$

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

le soluzioni si trovano risolvendo

$$x + 1 = 0$$
, $x - 3 = 0$, $5x + 7 = 0$

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

le soluzioni si trovano risolvendo

$$x + 1 = 0$$
, $x - 3 = 0$, $5x + 7 = 0$

$$x = -1$$
.

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

le soluzioni si trovano risolvendo

$$x + 1 = 0$$
, $x - 3 = 0$, $5x + 7 = 0$

$$x = -1, \qquad x = 3,$$

In simboli, le soluzioni si troveranno annullando *separatamente* i vari fattori, cioè

$$P_1(x) = 0$$
, $P_2(x) = 0$, ... $P_n(x) = 0$.

Per esempio, nell'equazione

$$(x+1)(x-3)(5x+7)=0$$

le soluzioni si trovano risolvendo

$$x + 1 = 0$$
, $x - 3 = 0$, $5x + 7 = 0$

$$x = -1,$$
 $x = 3,$ $x = -\frac{7}{5}.$

Dato il polinomio

Dato il polinomio

$$ax^2 + bx + c$$
,

Dato il polinomio

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

Dato il polinomio

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

$$p+q=b$$
,

Dato il polinomio

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

$$p + q = b$$
, $pq = ac$,

Dato il polinomio

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

$$p+q=b, \qquad pq=ac,$$

allora si ha

Dato il polinomio

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

$$p+q=b, \qquad pq=ac,$$

allora si ha

$$ax^2 + bx + c =$$

Dato il polinomio

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

$$p+q=b, \qquad pq=ac,$$

allora si ha

$$ax^{2} + bx + c = ax^{2} + (p+q)x + \frac{pq}{a} =$$

Dato il polinomio

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

$$p+q=b, \qquad pq=ac,$$

$$ax^{2} + bx + c = ax^{2} + (p+q)x + \frac{pq}{a} = ax^{2} + px + qx + \frac{pq}{a} = ax^{2}$$

Dato il polinomio

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

$$p+q=b, \qquad pq=ac,$$

$$ax^{2} + bx + c = ax^{2} + (p+q)x + \frac{pq}{a} = ax^{2} + px + qx + \frac{pq}{a} =$$

= $x(ax + p) + q\left(x + \frac{p}{a}\right) =$

Dato il polinomio

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

$$p+q=b, \qquad pq=ac,$$

$$ax^{2} + bx + c = ax^{2} + (p+q)x + \frac{pq}{a} = ax^{2} + px + qx + \frac{pq}{a} =$$

= $x(ax + p) + q\left(x + \frac{p}{a}\right) = x(ax + p) + \frac{q}{a}(ax + p) =$

Dato il polinomio

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

$$p + q = b$$
, $pq = ac$,

$$ax^{2} + bx + c = ax^{2} + (p+q)x + \frac{pq}{a} = ax^{2} + px + qx + \frac{pq}{a} =$$

$$= x(ax+p) + q\left(x + \frac{p}{a}\right) = x(ax+p) + \frac{q}{a}(ax+p) = (ax+p)\left(x + \frac{q}{a}\right)$$

Dato il polinomio

$$ax^2 + bx + c$$
,

dove a, b, c sono numeri reali e $a \neq 0$, se esistono due numeri p, q tali che

$$p+q=b, \qquad pq=ac,$$

$$ax^{2} + bx + c = ax^{2} + (p+q)x + \frac{pq}{a} = ax^{2} + px + qx + \frac{pq}{a} =$$

$$= x(ax+p) + q\left(x + \frac{p}{a}\right) = x(ax+p) + \frac{q}{a}(ax+p) = (ax+p)\left(x + \frac{q}{a}\right)$$

$$= \frac{1}{a}(ax+p)(ax+q).$$

Per esempio, dato il polinomio $2x^2 - x - 3$, cerchiamo due numeri aventi somma -1 e prodotto -6.

$$2x^2 - x - 3 =$$

$$2x^2 - x - 3 = \frac{1}{2}(2x - 3)(2x + 2) =$$

$$2x^2 - x - 3 = \frac{1}{2}(2x - 3)(2x + 2) = (2x - 3)(x + 1).$$

$$2x^2 - x - 3 = \frac{1}{2}(2x - 3)(2x + 2) = (2x - 3)(x + 1).$$

Pertanto, le soluzioni dell'equazione

$$2x^2 - x - 3 = \frac{1}{2}(2x - 3)(2x + 2) = (2x - 3)(x + 1).$$

Pertanto, le soluzioni dell'equazione

$$2x^2 - x - 3 = 0$$

$$2x^2 - x - 3 = \frac{1}{2}(2x - 3)(2x + 2) = (2x - 3)(x + 1).$$

Pertanto, le soluzioni dell'equazione

$$2x^2 - x - 3 = 0$$

$$2x^2 - x - 3 = \frac{1}{2}(2x - 3)(2x + 2) = (2x - 3)(x + 1).$$

Pertanto, le soluzioni dell'equazione

$$2x^2 - x - 3 = 0$$

$$2x - 3 = 0$$

$$2x^2 - x - 3 = \frac{1}{2}(2x - 3)(2x + 2) = (2x - 3)(x + 1).$$

Pertanto, le soluzioni dell'equazione

$$2x^2 - x - 3 = 0$$

$$2x - 3 = 0$$

$$2x^2 - x - 3 = \frac{1}{2}(2x - 3)(2x + 2) = (2x - 3)(x + 1).$$

Pertanto, le soluzioni dell'equazione

$$2x^2 - x - 3 = 0$$

$$2x - 3 = 0$$
 e $x + 1 = 0$

$$2x^2 - x - 3 = \frac{1}{2}(2x - 3)(2x + 2) = (2x - 3)(x + 1).$$

Pertanto, le soluzioni dell'equazione

$$2x^2 - x - 3 = 0$$

si trovano risolvendo le equazioni di primo grado

$$2x - 3 = 0$$
 e $x + 1 = 0$

e sono quindi x = -1 e x = 3/2.

© 2009-2010 Nuova Secondaria EDITRICE LA SCUOLA

(c) 2009–2010 Nuova Secondaria EDITRICE LA SCUOLA

• le equazioni *spurie*, della forma $ax^2 + bx = 0$

(c) 2009–2010 Nuova Secondaria EDITRICE LA SCUOLA

• le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- ② le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- ② le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **②** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente;

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **②** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti

$$ax^2 + bx = x(ax + b)$$

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- ② le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti

$$ax^2 + bx = x(ax + b)$$

e quindi

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **②** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti

$$ax^2 + bx = x(ax + b)$$

e quindi

Un'equazione spuria ammette sempre la soluzione nulla.

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- ② le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti

$$ax^2 + bx = x(ax + b)$$

e quindi

Un'equazione spuria ammette sempre la soluzione nulla. L'altra soluzione si ottiene dividendo l'equazione data per x e risolvendo l'equazione di primo grado risultante.

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- ② le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti

$$ax^2 + bx = x(ax + b)$$

e quindi

Un'equazione spuria ammette sempre la soluzione nulla. L'altra soluzione si ottiene dividendo l'equazione data per x e risolvendo l'equazione di primo grado risultante.

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **9** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti

$$ax^2 + bx = x(ax + b)$$

e quindi

Un'equazione spuria ammette sempre la soluzione nulla. L'altra soluzione si ottiene dividendo l'equazione data per x e risolvendo l'equazione di primo grado risultante.

Per esempio, l'equazione

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **②** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti

$$ax^2 + bx = x(ax + b)$$

e quindi

Un'equazione spuria ammette sempre la soluzione nulla. L'altra soluzione si ottiene dividendo l'equazione data per x e risolvendo l'equazione di primo grado risultante.

Per esempio, l'equazione

$$-3x^2 + 8x = 0$$

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **9** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti

$$ax^2 + bx = x(ax + b)$$

e quindi

Un'equazione spuria ammette sempre la soluzione nulla. L'altra soluzione si ottiene dividendo l'equazione data per x e risolvendo l'equazione di primo grado risultante.

Per esempio, l'equazione

$$-3x^2 + 8x = 0$$

si risolve ponendo

$$x = 0$$
.

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **②** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti

$$ax^2 + bx = x(ax + b)$$

e quindi

Un'equazione spuria ammette sempre la soluzione nulla. L'altra soluzione si ottiene dividendo l'equazione data per x e risolvendo l'equazione di primo grado risultante.

Per esempio, l'equazione

$$-3x^2 + 8x = 0$$

si risolve ponendo

$$x = 0, \quad -3x + 8 = 0$$

- le equazioni *spurie*, della forma $ax^2 + bx = 0$ (dunque c = 0)
- **②** le equazioni *pure*, della forma $ax^2 c = 0$ con a, c concordi in segno (dunque b = 0)

Le equazioni spurie si fattorizzano facilmente; infatti

$$ax^2 + bx = x(ax + b)$$

e quindi

Un'equazione spuria ammette sempre la soluzione nulla. L'altra soluzione si ottiene dividendo l'equazione data per x e risolvendo l'equazione di primo grado risultante.

Per esempio, l'equazione

$$-3x^2 + 8x = 0$$

si risolve ponendo

$$x = 0$$
, $-3x + 8 = 0$

e le soluzioni sono quindi x = 0 e x = 8/3.

Un'equazione pura si fattorizza sempre, ricorrendo alle radici quadrate.

Un'equazione pura si fattorizza sempre, ricorrendo alle radici quadrate. Infatti, se ad esempio a e c sono positivi,

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

Un'equazione pura si fattorizza sempre, ricorrendo alle radici quadrate. Infatti, se ad esempio a e c sono positivi,

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno).

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$2x^2-9=0$$

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$2x^2-9=0$$

si risolve scomponendo, così:

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$2x^2-9=0$$

si risolve scomponendo, così:

$$(\sqrt{2}x + 3)(\sqrt{2}x - 3) = 0$$

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$2x^2-9=0$$

si risolve scomponendo, così:

$$(\sqrt{2}x + 3)(\sqrt{2}x - 3) = 0$$

$$x = -\frac{3}{\sqrt{2}}$$

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$2x^2-9=0$$

si risolve scomponendo, così:

$$(\sqrt{2}x + 3)(\sqrt{2}x - 3) = 0$$

$$x = -\frac{3}{\sqrt{2}}$$
 e

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$2x^2-9=0$$

si risolve scomponendo, così:

$$(\sqrt{2}x+3)(\sqrt{2}x-3)=0$$

$$x = -\frac{3}{\sqrt{2}}$$
 e $x = \frac{3}{\sqrt{2}}$.

$$ax^2 - c = (\sqrt{a}x + \sqrt{c})(\sqrt{a}x - \sqrt{c}).$$

(Se a e c sono di segno negativo, basta raccogliere un segno meno). Per esempio, l'equazione

$$2x^2-9=0$$

si risolve scomponendo, così:

$$(\sqrt{2}x+3)(\sqrt{2}x-3)=0$$

$$x = -\frac{3}{\sqrt{2}}$$
 e $x = \frac{3}{\sqrt{2}}$.

$$ax^2 = c$$

$$ax^2 = c$$

allora, siccome $|x|^2 = x^2$, abbiamo

$$ax^2 = c$$

allora, siccome $|x|^2 = x^2$, abbiamo

$$a|x|^2=c$$

$$ax^2 = c$$

allora, siccome $|x|^2 = x^2$, abbiamo

$$a|x|^2 = c$$

e dunque

$$|x|^2 = \frac{c}{a},$$

$$ax^2 = c$$

allora, siccome $|x|^2 = x^2$, abbiamo

$$a|x|^2 = c$$

e dunque

$$|x|^2 = \frac{c}{a},$$

dal che si deduce che

$$ax^2 = c$$

allora, siccome $|x|^2 = x^2$, abbiamo

$$a|x|^2=c$$

e dunque

$$|x|^2 = \frac{c}{a},$$

dal che si deduce che

$$|x| = \sqrt{\frac{c}{a}}.$$

$$ax^2 = c$$

allora, siccome $|x|^2 = x^2$, abbiamo

$$a|x|^2 = c$$

e dunque

$$|x|^2 = \frac{c}{a},$$

dal che si deduce che

$$|x| = \sqrt{\frac{c}{a}}.$$

Per questo motivo spesso le soluzioni di un'equazione pura si scrivono nella forma

$$ax^2 = c$$

allora, siccome $|x|^2 = x^2$, abbiamo

$$a|x|^2=c$$

e dunque

$$|x|^2 = \frac{c}{a},$$

dal che si deduce che

$$|x| = \sqrt{\frac{c}{a}}.$$

Per questo motivo spesso le soluzioni di un'equazione pura si scrivono nella forma

$$x = \pm \sqrt{\frac{c}{a}}$$
.

Un'equazione di secondo grado potrebbe non ammettere soluzione.

mi Equazioni fattorizzabili **Equazioni non risolubili** Equazioni complete Somma e prodotto Differenza e rapporto Risoluzione geometrica

Un'equazione di secondo grado potrebbe non ammettere soluzione. Per esempio, l'equazione

© 2009-2010 Nuova Secondaria EDITRICE LA SCUOLA

$$x^2 + 1 = 0$$

$$x^2 + 1 = 0$$

non può ammettere soluzione.

$$x^2 + 1 = 0$$

non può ammettere soluzione. Infatti $x^2\geqslant 0$ per ogni possibile numero x, e quindi

$$x^2 + 1 = 0$$

non può ammettere soluzione. Infatti $x^2\geqslant 0$ per ogni possibile numero x, e quindi

$$x^2 + 1 \geqslant 1$$

e quindi $x^2 + 1$ non potrà mai essere zero.

Un'equazione di secondo grado potrebbe non ammettere soluzione.

Per esempio, l'equazione

$$x^2 + 1 = 0$$

non può ammettere soluzione. Infatti $x^2\geqslant 0$ per ogni possibile numero x, e quindi

$$x^2 + 1 \geqslant 1$$

e quindi $x^2 + 1$ non potrà mai essere zero.

Teorema

Un'equazione della forma

Un'equazione di secondo grado potrebbe non ammettere soluzione.

Per esempio, l'equazione

$$x^2+1=0$$

non può ammettere soluzione. Infatti $x^2\geqslant 0$ per ogni possibile numero x, e quindi

$$x^2 + 1 \ge 1$$

e quindi $x^2 + 1$ non potrà mai essere zero.

Teorema

Un'equazione della forma

$$ax^2 = c$$

$$x^2 + 1 = 0$$

non può ammettere soluzione. Infatti $x^2\geqslant 0$ per ogni possibile numero x, e quindi

$$x^2 + 1 \ge 1$$

e quindi $x^2 + 1$ non potrà mai essere zero.

Teorema

Un'equazione della forma

$$ax^2 = c$$

non è risolubile se a e c sono non nulli e discordi, ossia se ac < 0.

Un'equazione di secondo grado potrebbe non ammettere soluzione.

Per esempio, l'equazione

$$x^2 + 1 = 0$$

non può ammettere soluzione. Infatti $x^2\geqslant 0$ per ogni possibile numero x, e quindi

$$x^2 + 1 \geqslant 1$$

e quindi $x^2 + 1$ non potrà mai essere zero.

Teorema

Un'equazione della forma

$$ax^2 = c$$

non è risolubile se a e c sono non nulli e discordi, ossia se ac < 0.

$$x^2 + 1 = 0$$

non può ammettere soluzione. Infatti $x^2\geqslant 0$ per ogni possibile numero x, e quindi

$$x^2 + 1 \geqslant 1$$

e quindi $x^2 + 1$ non potrà mai essere zero.

Teorema

Un'equazione della forma

$$ax^2 = c$$

non è risolubile se a e c sono non nulli e discordi, ossia se ac < 0.

Dimostrazione. Supponiamo per assurdo che x sia una soluzione. Moltiplicando ambo i membri per a (che non è zero), risulta

$$x^2 + 1 = 0$$

non può ammettere soluzione. Infatti $x^2\geqslant 0$ per ogni possibile numero x, e quindi

$$x^2 + 1 \geqslant 1$$

e quindi $x^2 + 1$ non potrà mai essere zero.

Teorema

Un'equazione della forma

$$ax^2 = c$$

non è risolubile se a e c sono non nulli e discordi, ossia se ac < 0.

Dimostrazione. Supponiamo per assurdo che x sia una soluzione. Moltiplicando ambo i membri per a (che non è zero), risulta

$$a^2x^2 = ac.$$

$$x^2 + 1 = 0$$

non può ammettere soluzione. Infatti $x^2\geqslant 0$ per ogni possibile numero x, e quindi

$$x^2 + 1 \ge 1$$

e quindi $x^2 + 1$ non potrà mai essere zero.

Teorema

Un'equazione della forma

$$ax^2 = c$$

non è risolubile se a e c sono non nulli e discordi, ossia se ac < 0.

Dimostrazione. Supponiamo per assurdo che x sia una soluzione. Moltiplicando ambo i membri per a (che non è zero), risulta

$$a^2x^2 = ac.$$

Ora, a^2x^2 è un quadrato e quindi sempre positivo, mentre ac è per ipotesi negativo, il che è assurdo perché i due numeri dovrebbero essere uguali.

$$x^2 + 1 = 0$$

non può ammettere soluzione. Infatti $x^2\geqslant 0$ per ogni possibile numero x, e quindi

$$x^2 + 1 \ge 1$$

e quindi $x^2 + 1$ non potrà mai essere zero.

Teorema

Un'equazione della forma

$$ax^2 = c$$

non è risolubile se a e c sono non nulli e discordi, ossia se ac < 0.

Dimostrazione. Supponiamo per assurdo che x sia una soluzione. Moltiplicando ambo i membri per a (che non è zero), risulta

$$a^2x^2 = ac.$$

Ora, a^2x^2 è un quadrato e quindi sempre positivo, mentre ac è per ipotesi negativo, il che è assurdo perché i due numeri dovrebbero essere uguali.

(c) 2009-2010 Nuova Secondaria EDITRICE LA SCUOLA

Risolviamo ora l'equazione completa

$$ax^2 + bx + c = 0$$
 $(a \neq 0)$.

$$ax^2 + bx + c = 0$$
 $(a \neq 0)$.

Poniamo

$$y=x+\frac{b}{2a}.$$

$$ax^2 + bx + c = 0$$
 $(a \neq 0)$.

Poniamo

$$y=x+\frac{b}{2a}.$$

Allora

$$ax^2 + bx + c = 0$$
 $(a \neq 0)$.

Poniamo

$$y=x+\frac{b}{2a}.$$

Allora

$$ay^2 =$$

$$ax^2 + bx + c = 0 \qquad (a \neq 0).$$

Poniamo

$$y=x+\frac{b}{2a}.$$

Allora

$$ay^2 = a\left(x^2 + \frac{bx}{a} + \frac{b^2}{4a^2}\right) =$$

$$ax^2 + bx + c = 0 \qquad (a \neq 0).$$

Poniamo

$$y=x+\frac{b}{2a}.$$

Allora

$$ay^2 = a\left(x^2 + \frac{bx}{a} + \frac{b^2}{4a^2}\right) = ax^2 + bx + \frac{b^2}{4a}$$

$$ax^2 + bx + c = 0 \qquad (a \neq 0).$$

Poniamo

$$y=x+\frac{b}{2a}.$$

Allora

$$ay^2 = a\left(x^2 + \frac{bx}{a} + \frac{b^2}{4a^2}\right) = ax^2 + bx + \frac{b^2}{4a}$$

Ma dall'equazione abbiamo che $ax^2 + bx = -c$, per cui

$$ax^2 + bx + c = 0 \qquad (a \neq 0).$$

Poniamo

$$y=x+\frac{b}{2a}.$$

Allora

$$ay^2 = a\left(x^2 + \frac{bx}{a} + \frac{b^2}{4a^2}\right) = ax^2 + bx + \frac{b^2}{4a}$$

Ma dall'equazione abbiamo che $ax^2 + bx = -c$, per cui

$$ay^2 = \frac{b^2}{4a} - c = \frac{b^2 - 4ac}{4a}.$$

$$ax^2 + bx + c = 0 \qquad (a \neq 0).$$

Poniamo

$$y=x+\frac{b}{2a}.$$

Allora

$$ay^2 = a\left(x^2 + \frac{bx}{a} + \frac{b^2}{4a^2}\right) = ax^2 + bx + \frac{b^2}{4a}$$

Ma dall'equazione abbiamo che $ax^2 + bx = -c$, per cui

$$ay^2 = \frac{b^2}{4a} - c = \frac{b^2 - 4ac}{4a}$$
.

Quindi ci siamo ricondotti ad un'equazione pura, che, divisa per a (che non è nullo), dà

$$ax^2 + bx + c = 0$$
 $(a \neq 0)$.

Poniamo

$$y = x + \frac{b}{2a}.$$

Allora

$$ay^2 = a\left(x^2 + \frac{bx}{a} + \frac{b^2}{4a^2}\right) = ax^2 + bx + \frac{b^2}{4a}$$

Ma dall'equazione abbiamo che $ax^2 + bx = -c$, per cui

$$ay^2 = \frac{b^2}{4a} - c = \frac{b^2 - 4ac}{4a}$$
.

Quindi ci siamo ricondotti ad un'equazione pura, che, divisa per a (che non è nullo), dà

$$y^2 = \frac{b^2 - 4ac}{4a^2}$$
.

$$b^2 - 4ac \geqslant 0$$

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y=-\frac{\sqrt{b^2-4ac}}{2a},$$

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y = -\frac{\sqrt{b^2 - 4ac}}{2a}, \qquad y = \frac{\sqrt{b^2 - 4ac}}{2a}.$$

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y = -\frac{\sqrt{b^2 - 4ac}}{2a}, \qquad y = \frac{\sqrt{b^2 - 4ac}}{2a}.$$

(Notiamo che le formule valgono anche se a < 0, perché in quel caso la prima soluzione è positiva e la seconda negativa).

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y = -\frac{\sqrt{b^2 - 4ac}}{2a}, \qquad y = \frac{\sqrt{b^2 - 4ac}}{2a}.$$

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y = -\frac{\sqrt{b^2 - 4ac}}{2a}, \qquad y = \frac{\sqrt{b^2 - 4ac}}{2a}.$$

$$x = y - \frac{b}{2a} =$$

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y=-\frac{\sqrt{b^2-4ac}}{2a}, \qquad y=\frac{\sqrt{b^2-4ac}}{2a}.$$

$$x = y - \frac{b}{2a} = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} =$$

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y = -\frac{\sqrt{b^2 - 4ac}}{2a}, \qquad y = \frac{\sqrt{b^2 - 4ac}}{2a}.$$

$$x = y - \frac{b}{2a} = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y = -\frac{\sqrt{b^2 - 4ac}}{2a}, \qquad y = \frac{\sqrt{b^2 - 4ac}}{2a}.$$

(Notiamo che le formule valgono anche se a < 0, perché in quel caso la prima soluzione è positiva e la seconda negativa). Tornando a x, abbiamo ora che le soluzioni in x sono date da

$$x = y - \frac{b}{2a} = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y=-\frac{\sqrt{b^2-4ac}}{2a}, \qquad y=\frac{\sqrt{b^2-4ac}}{2a}.$$

(Notiamo che le formule valgono anche se a < 0, perché in quel caso la prima soluzione è positiva e la seconda negativa). Tornando a x, abbiamo ora che le soluzioni in x sono date da

$$x = y - \frac{b}{2a} = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

e

$$x = y + \frac{b}{2a} =$$

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y = -\frac{\sqrt{b^2 - 4ac}}{2a}, \qquad y = \frac{\sqrt{b^2 - 4ac}}{2a}.$$

(Notiamo che le formule valgono anche se a < 0, perché in quel caso la prima soluzione è positiva e la seconda negativa). Tornando a x, abbiamo ora che le soluzioni in x sono date da

$$x = y - \frac{b}{2a} = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x = y + \frac{b}{2a} = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} =$$

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y=-\frac{\sqrt{b^2-4ac}}{2a}, \qquad y=\frac{\sqrt{b^2-4ac}}{2a}.$$

(Notiamo che le formule valgono anche se a < 0, perché in quel caso la prima soluzione è positiva e la seconda negativa). Tornando a x, abbiamo ora che le soluzioni in x sono date da

$$x = y - \frac{b}{2a} = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x = y + \frac{b}{2a} = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}.$$

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y=-\frac{\sqrt{b^2-4ac}}{2a}, \qquad y=\frac{\sqrt{b^2-4ac}}{2a}.$$

(Notiamo che le formule valgono anche se a < 0, perché in quel caso la prima soluzione è positiva e la seconda negativa). Tornando a x, abbiamo ora che le soluzioni in x sono date da

$$x = y - \frac{b}{2a} = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x = y + \frac{b}{2a} = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}.$$

Queste due soluzioni si scrivono spesso in forma compatta

$$b^2 - 4ac \geqslant 0$$

date esattamente da

$$y = -\frac{\sqrt{b^2 - 4ac}}{2a}, \qquad y = \frac{\sqrt{b^2 - 4ac}}{2a}.$$

(Notiamo che le formule valgono anche se a < 0, perché in quel caso la prima soluzione è positiva e la seconda negativa). Tornando a x, abbiamo ora che le soluzioni in x sono date da

$$x = y - \frac{b}{2a} = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x = y + \frac{b}{2a} = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}.$$

Queste due soluzioni si scrivono spesso in forma compatta

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
.

$$\Delta = b^2 - 4ac.$$

$$\Delta = b^2 - 4ac.$$

Infatti, se $\Delta < 0$, l'equazione

$$\Delta = b^2 - 4ac.$$

Infatti, se $\Delta < 0$, l'equazione

$$y^2 = \frac{b^2 - 4ac}{4a^2} = \frac{\Delta}{4a^2}$$

non può avere soluzioni, per quanto osservato in precedenza.

$$\Delta = b^2 - 4ac.$$

Infatti, se $\Delta < 0$, l'equazione

$$y^2 = \frac{b^2 - 4ac}{4a^2} = \frac{\Delta}{4a^2}$$

non può avere soluzioni, per quanto osservato in precedenza. Se infine $\Delta=0$, allora necessariamente y=0 e quindi x=-b/2a è l'unica soluzione dell'equazione.

$$\Delta = b^2 - 4ac.$$

Infatti, se $\Delta < 0$, l'equazione

$$y^2 = \frac{b^2 - 4ac}{4a^2} = \frac{\Delta}{4a^2}$$

non può avere soluzioni, per quanto osservato in precedenza.

Se infine $\Delta=0$, allora necessariamente y=0 e quindi x=-b/2a è l'unica soluzione dell'equazione.

Osserviamo ora che non vi possono essere altre soluzioni oltre quelle date.

$$\Delta = b^2 - 4ac.$$

Infatti, se $\Delta < 0$, l'equazione

$$y^2 = \frac{b^2 - 4ac}{4a^2} = \frac{\Delta}{4a^2}$$

non può avere soluzioni, per quanto osservato in precedenza.

Se infine $\Delta = 0$, allora necessariamente y = 0 e quindi x = -b/2a è l'unica soluzione dell'equazione.

Osserviamo ora che *non vi possono essere altre soluzioni oltre quelle date*. Infatti, è chiaro che x è soluzione dell'equazione data se e solo se y è soluzione dell'equazione sopra scritta.

$$\Delta = b^2 - 4ac.$$

Infatti, se $\Delta < 0$, l'equazione

$$y^2 = \frac{b^2 - 4ac}{4a^2} = \frac{\Delta}{4a^2}$$

non può avere soluzioni, per quanto osservato in precedenza.

Se infine $\Delta = 0$, allora necessariamente y = 0 e quindi x = -b/2a è l'unica soluzione dell'equazione.

Osserviamo ora che *non vi possono essere altre soluzioni oltre quelle date*. Infatti, è chiaro che x è soluzione dell'equazione data se e solo se y è soluzione dell'equazione sopra scritta. Quindi, se $\Delta < 0$ non vi sono soluzioni,

$$\Delta = b^2 - 4ac.$$

Infatti, se $\Delta < 0$, l'equazione

$$y^2 = \frac{b^2 - 4ac}{4a^2} = \frac{\Delta}{4a^2}$$

non può avere soluzioni, per quanto osservato in precedenza.

Se infine $\Delta = 0$, allora necessariamente y = 0 e quindi x = -b/2a è l'unica soluzione dell'equazione.

Osserviamo ora che *non vi possono essere altre soluzioni oltre quelle date*. Infatti, è chiaro che x è soluzione dell'equazione data se e solo se y è soluzione dell'equazione sopra scritta. Quindi, se $\Delta < 0$ non vi sono soluzioni, se $\Delta = 0$ vi è solo la soluzione y = 0,

$$\Delta = b^2 - 4ac.$$

Infatti, se $\Delta < 0$, l'equazione

$$y^2 = \frac{b^2 - 4ac}{4a^2} = \frac{\Delta}{4a^2}$$

non può avere soluzioni, per quanto osservato in precedenza. Se infine $\Delta=0$, allora necessariamente y=0 e quindi x=-b/2a è

l'unica soluzione dell'equazione.

Osserviamo ora che non vi possono essere altre soluzioni oltre quelle date. Infatti, è chiaro che x è soluzione dell'equazione data se e solo se y è soluzione dell'equazione sopra scritta. Quindi, se $\Delta < 0$ non vi sono soluzioni, se $\Delta = 0$ vi è solo la soluzione y = 0, mentre se $\Delta > 0$ vi sono solo le due soluzioni date, in quanto vi sono solo due numeri aventi per quadrato un dato numero.

Ricapitolando, abbiamo

Ricapitolando, abbiamo

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

mi Equazioni fattorizzabili Equazioni non risolubili **Equazioni complete** Somma e prodotto Differenza e rapporto Risoluzione geometrica

Ricapitolando, abbiamo

Teorema

Data un'equazione di secondo grado nella forma

Ricapitolando, abbiamo

Teorema

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che, posto $\Delta = b^2 - 4ac$

 $oldsymbol{0}$ se $\Delta>0$ l'equazione ammette due soluzioni date da

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che, posto $\Delta = b^2 - 4ac$

 $oldsymbol{0}$ se $\Delta > 0$ l'equazione ammette due soluzioni date da

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a};$$

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che, posto $\Delta = b^2 - 4ac$

ullet se $\Delta > 0$ l'equazione ammette due soluzioni date da

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a};$$

 $oldsymbol{Q}$ se $\Delta=0$, l'equazione ammette una sola soluzione data da

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che, posto $\Delta = b^2 - 4ac$

ullet se $\Delta > 0$ l'equazione ammette due soluzioni date da

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a};$$

 $oldsymbol{9}$ se $\Delta=0$, l'equazione ammette una sola soluzione data da

$$x=-\frac{b}{2a}$$
;

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che, posto $\Delta = b^2 - 4ac$

 \bullet se $\Delta > 0$ l'equazione ammette due soluzioni date da

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a};$$

 $oldsymbol{Q}$ se $\Delta=0$, l'equazione ammette una sola soluzione data da

$$x=-\frac{b}{2a}$$
;

 \bullet se $\Delta < 0$, l'equazione non ammette soluzioni.

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

e

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

coincidono.

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

coincidono. Per questo motivo spesso si dice che se $\Delta=0$ si hanno "due soluzioni coincidenti".

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

coincidono. Per questo motivo spesso si dice che se $\Delta=0$ si hanno "due soluzioni coincidenti". Questa strana locuzione ha un suo significato geometrico che apparirà chiaro in Geometria Analitica.

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} =$$

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = = -\frac{d}{a} \pm \frac{\sqrt{4d^2 - 4ac}}{2a} =$$

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = = -\frac{d}{a} \pm \frac{\sqrt{4d^2 - 4ac}}{2a} = = -\frac{d \pm \sqrt{d^2 - ac}}{a}$$

Se in un'equazione di secondo grado si ha b=2d, la formula risolutiva diventa

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = \\ = -\frac{d}{a} \pm \frac{\sqrt{4d^2 - 4ac}}{2a} = \\ = -\frac{d \pm \sqrt{d^2 - ac}}{a}$$

che viene detta formula ridotta ed è comoda quando b è pari, cosicché d è intero.

Se in un'equazione di secondo grado si ha b=2d, la formula risolutiva diventa

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = = -\frac{d}{a} \pm \frac{\sqrt{4d^2 - 4ac}}{2a} = = -\frac{d \pm \sqrt{d^2 - ac}}{a}$$

che viene detta formula ridotta ed è comoda quando b è pari, cosicché d è intero.

Se infine si ha anche a=1 (cosa che in teoria è sempre possibile avere, a costo però di trovare eventualmente altri coefficienti frazionari), e b=-2p l'equazione assume la forma

Se in un'equazione di secondo grado si ha b=2d, la formula risolutiva diventa

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = \\ = -\frac{d}{a} \pm \frac{\sqrt{4d^2 - 4ac}}{2a} = \\ = -\frac{d \pm \sqrt{d^2 - ac}}{a}$$

che viene detta formula ridotta ed è comoda quando b è pari, cosicché d è intero.

Se infine si ha anche a=1 (cosa che in teoria è sempre possibile avere, a costo però di trovare eventualmente altri coefficienti frazionari), e b=-2p l'equazione assume la forma

$$x^2 - 2px + q = 0$$

Se in un'equazione di secondo grado si ha b=2d, la formula risolutiva diventa

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = \\ = -\frac{d}{a} \pm \frac{\sqrt{4d^2 - 4ac}}{2a} = \\ = -\frac{d \pm \sqrt{d^2 - ac}}{a}$$

che viene detta formula ridotta ed è comoda quando b è pari, cosicché d è intero.

Se infine si ha anche a=1 (cosa che in teoria è sempre possibile avere, a costo però di trovare eventualmente altri coefficienti frazionari), e b=-2p l'equazione assume la forma

$$x^2 - 2px + q = 0$$

e la formula diventa

Se in un'equazione di secondo grado si ha b=2d, la formula risolutiva diventa

$$x_{1,2} = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = \\ = -\frac{d}{a} \pm \frac{\sqrt{4d^2 - 4ac}}{2a} = \\ = -\frac{d \pm \sqrt{d^2 - ac}}{a}$$

che viene detta formula ridotta ed è comoda quando b è pari, cosicché d è intero.

Se infine si ha anche a=1 (cosa che in teoria è sempre possibile avere, a costo però di trovare eventualmente altri coefficienti frazionari), e b=-2p l'equazione assume la forma

$$x^2 - 2px + q = 0$$

e la formula diventa

$$x_{1,2} = p \pm \sqrt{p^2 - q}$$
.

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} =$$

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$x_2=-\frac{b}{2a}+\frac{\sqrt{b^2-4ac}}{2a}=$$

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

e

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

e

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

Abbiamo quindi dimostrato che

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

Abbiamo quindi dimostrato che

Somma delle soluzioni di un'equazione di secondo grado

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

Abbiamo quindi dimostrato che

Somma delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

Abbiamo quindi dimostrato che

Somma delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

Abbiamo quindi dimostrato che

Somma delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che la somma delle soluzioni è data da

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

Abbiamo quindi dimostrato che

Somma delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che la somma delle soluzioni è data da

$$x_1 + x_2 = -\frac{b}{a}$$
.

$$x_1 = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{a} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

е

$$x_2 = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

troviamo facilmente

$$x_1+x_2=-\frac{b}{a}.$$

Abbiamo quindi dimostrato che

Somma delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che la somma delle soluzioni è data da

$$x_1 + x_2 = -\frac{b}{a}$$
.

(c)2009-2010 Nuova Secondaria EDITRICE LA SCUOLA

Vediamo ora il prodotto.

Vediamo ora il prodotto.

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

$$a(x_1+x_2)^2=ax_1^2+2ax_1x_2+ax_2^2.$$

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

$$a(x_1+x_2)^2=ax_1^2+2ax_1x_2+ax_2^2.$$

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

$$a(x_1+x_2)^2=ax_1^2+2ax_1x_2+ax_2^2.$$

$$ax_1^2 = -bx_1 - c$$

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

$$a(x_1+x_2)^2=ax_1^2+2ax_1x_2+ax_2^2.$$

$$ax_1^2 = -bx_1 - c \qquad e$$

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

$$a(x_1+x_2)^2=ax_1^2+2ax_1x_2+ax_2^2.$$

$$ax_1^2 = -bx_1 - c$$
 e $ax_2^2 = -bx_2 - c$,

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

$$a(x_1+x_2)^2=ax_1^2+2ax_1x_2+ax_2^2.$$

Ora, poiché x_1 e x_2 sono soluzioni, si deve avere

$$ax_1^2 = -bx_1 - c$$
 e $ax_2^2 = -bx_2 - c$,

per cui

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

$$a(x_1+x_2)^2=ax_1^2+2ax_1x_2+ax_2^2.$$

Ora, poiché x_1 e x_2 sono soluzioni, si deve avere

$$ax_1^2 = -bx_1 - c$$
 e $ax_2^2 = -bx_2 - c$,

per cui

$$a(x_1+x_2)^2=-b(x_1+x_2)-2c+2ax_1x_2.$$

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

$$a(x_1+x_2)^2=ax_1^2+2ax_1x_2+ax_2^2.$$

Ora, poiché x_1 e x_2 sono soluzioni, si deve avere

$$ax_1^2 = -bx_1 - c$$
 e $ax_2^2 = -bx_2 - c$,

per cui

$$a(x_1+x_2)^2=-b(x_1+x_2)-2c+2ax_1x_2.$$

Sostituendo a $x_1 + x_2$ il valore -b/a appena trovato abbiamo

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

$$a(x_1+x_2)^2=ax_1^2+2ax_1x_2+ax_2^2.$$

Ora, poiché x_1 e x_2 sono soluzioni, si deve avere

$$ax_1^2 = -bx_1 - c$$
 e $ax_2^2 = -bx_2 - c$,

per cui

$$a(x_1+x_2)^2=-b(x_1+x_2)-2c+2ax_1x_2.$$

Sostituendo a $x_1 + x_2$ il valore -b/a appena trovato abbiamo

$$\frac{b^2}{a} = \frac{b^2}{a} - 2c + 2ax_1x_2$$

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

$$a(x_1+x_2)^2=ax_1^2+2ax_1x_2+ax_2^2.$$

Ora, poiché x_1 e x_2 sono soluzioni, si deve avere

$$ax_1^2 = -bx_1 - c$$
 e $ax_2^2 = -bx_2 - c$,

per cui

$$a(x_1+x_2)^2=-b(x_1+x_2)-2c+2ax_1x_2.$$

Sostituendo a $x_1 + x_2$ il valore -b/a appena trovato abbiamo

$$\frac{b^2}{a} = \frac{b^2}{a} - 2c + 2ax_1x_2$$

e pertanto

Se x_1 e x_2 sono le due soluzioni, abbiamo intanto che

$$a(x_1+x_2)^2=ax_1^2+2ax_1x_2+ax_2^2.$$

Ora, poiché x_1 e x_2 sono soluzioni, si deve avere

$$ax_1^2 = -bx_1 - c$$
 e $ax_2^2 = -bx_2 - c$,

per cui

$$a(x_1+x_2)^2=-b(x_1+x_2)-2c+2ax_1x_2.$$

Sostituendo a $x_1 + x_2$ il valore -b/a appena trovato abbiamo

$$\frac{b^2}{a} = \frac{b^2}{a} - 2c + 2ax_1x_2$$

e pertanto

$$x_1x_2 = \frac{c}{2}$$
.

Prodotto delle soluzioni di un'equazione di secondo grado

Prodotto delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

Prodotto delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

Prodotto delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che il prodotto delle soluzioni è dato da

Prodotto delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che il prodotto delle soluzioni è dato da

$$x_1x_2=\frac{c}{a}$$
.

Prodotto delle soluzioni di un'equazione di secondo grado

Data un'equazione di secondo grado nella forma

$$ax^2 + bx + c = 0$$

si ha che il prodotto delle soluzioni è dato da

$$x_1x_2=\frac{c}{a}$$
.

Prendiamo un'equazione completa

Prendiamo un'equazione completa

$$ax^2 + bx + c = 0$$

Prendiamo un'equazione completa

$$ax^2 + bx + c = 0$$

e dividiamola per a, ottenendo

Prendiamo un'equazione completa

$$ax^2 + bx + c = 0$$

e dividiamola per a, ottenendo

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0.$$

Prendiamo un'equazione completa

$$ax^2 + bx + c = 0$$

e dividiamola per a, ottenendo

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0.$$

Indicando con s la somma delle soluzioni e con p il loro prodotto, possiamo anche scrivere, in virtù di quanto detto sopra,

Prendiamo un'equazione completa

$$ax^2 + bx + c = 0$$

e dividiamola per a, ottenendo

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0.$$

Indicando con s la somma delle soluzioni e con p il loro prodotto, possiamo anche scrivere, in virtù di quanto detto sopra,

$$x^2 - sx + p = 0.$$

Prendiamo un'equazione completa

$$ax^2 + bx + c = 0$$

e dividiamola per a, ottenendo

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0.$$

Indicando con s la somma delle soluzioni e con p il loro prodotto, possiamo anche scrivere, in virtù di quanto detto sopra,

$$x^2 - sx + p = 0.$$

Adesso supponiamo che l'equazione sia risolubile e osserviamo che

• Se p > 0, le soluzioni sono concordi in segno;

 Se p > 0, le soluzioni sono concordi in segno; il loro segno sarà quindi quello della somma.

- Se p > 0, le soluzioni sono concordi in segno; il loro segno sarà quindi quello della somma.
- Se p < 0, le soluzioni sono discordi in segno;

- Se p > 0, le soluzioni sono concordi in segno; il loro segno sarà quindi quello della somma.
- Se p < 0, le soluzioni sono discordi in segno; il segno di quella maggiore in valore assoluto sarà il segno della somma.

- Se p > 0, le soluzioni sono concordi in segno; il loro segno sarà quindi quello della somma.
- Se p < 0, le soluzioni sono discordi in segno; il segno di quella maggiore in valore assoluto sarà il segno della somma.

- Se p > 0, le soluzioni sono concordi in segno; il loro segno sarà quindi quello della somma.
- Se p < 0, le soluzioni sono discordi in segno; il segno di quella maggiore in valore assoluto sarà il segno della somma.

• se s > 0, i coefficienti dell'equazione hanno segni + + + oppure - - - (a seconda del segno di a)

- Se p > 0, le soluzioni sono concordi in segno; il loro segno sarà quindi quello della somma.
- Se p < 0, le soluzioni sono discordi in segno; il segno di quella maggiore in valore assoluto sarà il segno della somma.

- se s > 0, i coefficienti dell'equazione hanno segni + + + oppure - (a seconda del segno di a)
- se s < 0, i coefficienti dell'equazione hanno segni + + oppure + (a seconda del segno di a).

- Se p > 0, le soluzioni sono concordi in segno; il loro segno sarà quindi quello della somma.
- Se p < 0, le soluzioni sono discordi in segno; il segno di quella maggiore in valore assoluto sarà il segno della somma.

- se s > 0, i coefficienti dell'equazione hanno segni + + + oppure - (a seconda del segno di a)
- se s < 0, i coefficienti dell'equazione hanno segni + + oppure + (a seconda del segno di a).

Nel secondo caso, invece, i coefficienti dell'equazione hanno segni $+\ +\ -$ oppure $+\ -\ -$.

Possiamo pertanto chiamare permanenza di segno ogni coppia ++ o -- di segni consecutivi nell'equazione e variazione ogni coppia +- o -+.

Possiamo pertanto chiamare permanenza di segno ogni coppia ++ o

- - di segni consecutivi nell'equazione e variazione ogni coppia + o
- -+. Per esempio,

Possiamo pertanto chiamare permanenza di segno ogni coppia ++ o

- -- di segni consecutivi nell'equazione e $\emph{variazione}$ ogni coppia +- o
- -+. Per esempio,
 - l'equazione $-2x^2 + x 1 = 0$ ha due variazioni

Possiamo pertanto chiamare *permanenza* di segno ogni coppia + + o

- - di segni consecutivi nell'equazione e $\emph{variazione}$ ogni coppia + o
- +. Per esempio,
 - l'equazione $-2x^2 + x 1 = 0$ ha due variazioni (-+-)

Possiamo pertanto chiamare permanenza di segno ogni coppia ++ o

- - di segni consecutivi nell'equazione e $\emph{variazione}$ ogni coppia + o
- +. Per esempio,
 - l'equazione $-2x^2 + x 1 = 0$ ha due variazioni $(\underbrace{-+-}_{V})$
 - l'equazione $4x^2 9x + 2 = 0$ ha due variazioni

Possiamo pertanto chiamare $\it permanenza$ di segno ogni coppia $\it + + o$

- - di segni consecutivi nell'equazione e $\emph{variazione}$ ogni coppia + o
- +. Per esempio,
 - l'equazione $-2x^2 + x 1 = 0$ ha due variazioni $(\underbrace{-+-}_{V})$
 - l'equazione $4x^2 9x + 2 = 0$ ha due variazioni (+ +)

Possiamo pertanto chiamare permanenza di segno ogni coppia + + o - - di segni consecutivi nell'equazione e variazione ogni coppia + - o - +. Per esempio,

- l'equazione $-2x^2 + x 1 = 0$ ha due variazioni $(\underbrace{-+-}_{V})$
- l'equazione $4x^2 9x + 2 = 0$ ha due variazioni (+ +)
- l'equazione $x^2 + x 1 = 0$ ha una variazione e una permanenza

Possiamo pertanto chiamare permanenza di segno ogni coppia ++ o - di segni consecutivi nell'equazione e variazione ogni coppia + o - +. Per esempio,

- l'equazione $-2x^2 + x 1 = 0$ ha due variazioni (-+-)
- l'equazione $4x^2 9x + 2 = 0$ ha due variazioni (+ +)
- l'equazione $x^2+x-1=0$ ha una variazione e una permanenza $(\underbrace{++}_{R}-)$

Possiamo pertanto chiamare permanenza di segno ogni coppia + + o - - di segni consecutivi nell'equazione e variazione ogni coppia + - o - +. Per esempio,

- l'equazione $-2x^2 + x 1 = 0$ ha due variazioni (-+-)
- l'equazione $4x^2 9x + 2 = 0$ ha due variazioni (+ +)
- l'equazione $x^2+x-1=0$ ha una variazione e una permanenza $(\underbrace{++}_{R}-)$
- l'equazione $3x^2 + x + 2 = 0$ ha due permanenze

Possiamo pertanto chiamare permanenza di segno ogni coppia ++ o -- di segni consecutivi nell'equazione e variazione ogni coppia +- o -+. Per esempio,

- l'equazione $-2x^2 + x 1 = 0$ ha due variazioni (-+-)
- l'equazione $4x^2 9x + 2 = 0$ ha due variazioni (+ +)
- l'equazione $x^2+x-1=0$ ha una variazione e una permanenza $\underbrace{(++-)}$
- l'equazione $3x^2 + x + 2 = 0$ ha due permanenze (+ + +)

Possiamo pertanto chiamare permanenza di segno ogni coppia ++ o -- di segni consecutivi nell'equazione e variazione ogni coppia +- o -+. Per esempio,

- l'equazione $-2x^2 + x 1 = 0$ ha due variazioni (-+-)
- l'equazione $4x^2 9x + 2 = 0$ ha due variazioni (+ +)
- l'equazione $x^2+x-1=0$ ha una variazione e una permanenza $\underbrace{(++-)}$
- l'equazione $3x^2 + x + 2 = 0$ ha due permanenze (+ + +)

2 variazioni
$$+ - + \text{ opp. } - + -$$
: 2 sol. positive

2 variazioni + - + opp. - + -: 2 sol. positive

$$+ - + \text{ opp. } - + -$$

2 permanenze + + + opp. - - -:

2 sol. negative

2 variazioni +-+ opp. -+-: 2 sol. positive 2 permanenze +++ opp. ---: 2 sol. negative 1 var. e 1 perm. +-- opp. -++: 1 sol. pos. e una neg.

```
2 variazioni +-+ opp. -+-: 2 sol. positive 2 permanenze +++ opp. ---: 2 sol. negative 1 var. e 1 perm. +-- opp. -++: 1 sol. pos. e una neg. 1 perm. e 1 var. ++- opp. --+: 1 sol. pos. e una neg.
```

```
2 variazioni +-+ opp. -+-: 2 sol. positive
2 permanenze +++ opp. ---: 2 sol. negative
1 var. e 1 perm. +-- opp. -++: 1 sol. pos. e una neg.
1 perm. e 1 var. ++- opp. --+: 1 sol. pos. e una neg.
```

(negli ultimi due casi, la soluzione maggiore in valore assoluto è quella che corrisponde alla prima delle occorrenze (variazione o permanenza)).

(negli ultimi due casi, la soluzione maggiore in valore assoluto è quella che corrisponde alla prima delle occorrenze (variazione o permanenza)).

Questa regola è nota come regola di Cartesio:

```
2 variazioni +-+ opp. -+-: 2 sol. positive
2 permanenze +++ opp. ---: 2 sol. negative
1 var. e 1 perm. +-- opp. -++: 1 sol. pos. e una neg.
1 perm. e 1 var. ++- opp. --+: 1 sol. pos. e una neg.
```

(negli ultimi due casi, la soluzione maggiore in valore assoluto è quella che corrisponde alla prima delle occorrenze (variazione o permanenza)).

Questa regola è nota come regola di Cartesio: ad ogni variazione è associata una radice positiva, e ad ogni permanenza una negativa, la maggiore in valore assoluto associata alla prima delle due.

Vediamo adesso la differenza, supponendo intanto che a>0, col che $x_1< x_2$

© 2009-2010 Nuova Secondaria EDITRICE LA SCUOLA

Abbiamo

$$x_2 - x_1 = \frac{-b + \sqrt{\Delta}}{2a} - \frac{-b - \sqrt{\Delta}}{2a} =$$

Abbiamo

$$x_2 - x_1 = \frac{-b + \sqrt{\Delta}}{2a} - \frac{-b - \sqrt{\Delta}}{2a} = \frac{2\sqrt{\Delta}}{2a} =$$

Abbiamo

$$x_2-x_1=rac{-b+\sqrt{\Delta}}{2a}-rac{-b-\sqrt{\Delta}}{2a}=rac{2\sqrt{\Delta}}{2a}=rac{\sqrt{\Delta}}{a}.$$

Abbiamo

$$x_2-x_1=rac{-b+\sqrt{\Delta}}{2a}-rac{-b-\sqrt{\Delta}}{2a}=rac{2\sqrt{\Delta}}{2a}=rac{\sqrt{\Delta}}{a}.$$

Se a < 0, evidentemente può cambiare solo il segno della differenza, perché x_1 e x_2 si scambiano, e quindi

Abbiamo

$$x_2-x_1=rac{-b+\sqrt{\Delta}}{2a}-rac{-b-\sqrt{\Delta}}{2a}=rac{2\sqrt{\Delta}}{2a}=rac{\sqrt{\Delta}}{a}.$$

Se a < 0, evidentemente può cambiare solo il segno della differenza, perché x_1 e x_2 si scambiano, e quindi

$$|x_1-x_2|=\frac{\sqrt{\Delta}}{|a|}.$$

Abbiamo

$$x_2-x_1=rac{-b+\sqrt{\Delta}}{2a}-rac{-b-\sqrt{\Delta}}{2a}=rac{2\sqrt{\Delta}}{2a}=rac{\sqrt{\Delta}}{a}.$$

Se a < 0, evidentemente può cambiare solo il segno della differenza, perché x_1 e x_2 si scambiano, e quindi

$$|x_1-x_2|=\frac{\sqrt{\Delta}}{|a|}.$$

$$\frac{x_1 + x_2}{x_1 x_2} = \frac{x_1}{x_2} + \frac{x_2}{x_1} = \frac{-b/a}{c/a}.$$

$$\frac{x_1 + x_2}{x_1 x_2} = \frac{x_1}{x_2} + \frac{x_2}{x_1} = \frac{-b/a}{c/a}.$$

Posto quindi

$$\frac{x_1 + x_2}{x_1 x_2} = \frac{x_1}{x_2} + \frac{x_2}{x_1} = \frac{-b/a}{c/a}.$$

Posto quindi

$$r=\frac{x_1}{x_2},$$

$$\frac{x_1 + x_2}{x_1 x_2} = \frac{x_1}{x_2} + \frac{x_2}{x_1} = \frac{-b/a}{c/a}.$$

Posto quindi

$$r=\frac{x_1}{x_2},$$

abbiamo

$$\frac{x_1 + x_2}{x_1 x_2} = \frac{x_1}{x_2} + \frac{x_2}{x_1} = \frac{-b/a}{c/a}.$$

Posto quindi

$$r=\frac{x_1}{x_2},$$

abbiamo

$$r+\frac{1}{r}=-\frac{b}{c},$$

$$\frac{x_1 + x_2}{x_1 x_2} = \frac{x_1}{x_2} + \frac{x_2}{x_1} = \frac{-b/a}{c/a}.$$

Posto quindi

$$r=\frac{x_1}{x_2},$$

abbiamo

$$r + \frac{1}{r} = -\frac{b}{c},$$

oppure

$$\frac{x_1 + x_2}{x_1 x_2} = \frac{x_1}{x_2} + \frac{x_2}{x_1} = \frac{-b/a}{c/a}.$$

Posto quindi

$$r=\frac{x_1}{x_2},$$

abbiamo

$$r + \frac{1}{r} = -\frac{b}{c},$$

oppure

$$cr^2 + br + c = 0.$$

$$\frac{x_1 + x_2}{x_1 x_2} = \frac{x_1}{x_2} + \frac{x_2}{x_1} = \frac{-b/a}{c/a}.$$

Posto quindi

$$r=\frac{x_1}{x_2},$$

abbiamo

$$r+\frac{1}{r}=-\frac{b}{c}$$

oppure

$$cr^2 + br + c = 0.$$

Quindi

Il rapporto \boldsymbol{r} delle soluzioni di un'equazione di secondo grado

Il rapporto $\it r$ delle soluzioni di un'equazione di secondo grado

$$ax^2 + bx + c = 0 \qquad (a, c \neq 0)$$

$$ax^2 + bx + c = 0 \qquad (a, c \neq 0)$$

verifica l'equazione

$$ax^2 + bx + c = 0 \qquad (a, c \neq 0)$$

verifica l'equazione

$$cr^2 + br + c = 0.$$

$$ax^2 + bx + c = 0 \qquad (a, c \neq 0)$$

verifica l'equazione

$$cr^2 + br + c = 0.$$

Le due soluzioni di questa equazione sono l'una reciproca dell'altra (infatti $r_1r_2=1$)

$$ax^2 + bx + c = 0 \qquad (a, c \neq 0)$$

verifica l'equazione

$$cr^2 + br + c = 0.$$

Le due soluzioni di questa equazione sono l'una reciproca dell'altra (infatti $r_1r_2 = 1$) e corrispondono ai due rapporti x_1/x_2 e x_2/x_1 .

$$ax^2 + bx + c = 0 \qquad (a, c \neq 0)$$

verifica l'equazione

$$cr^2 + br + c = 0.$$

Le due soluzioni di questa equazione sono l'una reciproca dell'altra (infatti $r_1r_2 = 1$) e corrispondono ai due rapporti x_1/x_2 e x_2/x_1 . Dunque

$$r = \frac{-b \pm \sqrt{b^2 - 4c^2}}{2c}.$$

È possibile anche dare un senso geometrico alla formula risolutiva dell'equazione di secondo grado. Per semplicità, ci riferiremo alla forma È possibile anche dare un senso geometrico alla formula risolutiva dell'equazione di secondo grado. Per semplicità, ci riferiremo alla forma

$$x^2 + 2px = q,$$

È possibile anche dare un senso geometrico alla formula risolutiva dell'equazione di secondo grado. Per semplicità, ci riferiremo alla forma

$$x^2 + 2px = q,$$

dove p e q sono positivi, che era una forma in voga nel Quattrocento e nel Cinquecento, prima che fossero introdotti i numeri negativi.

Per semplicità, ci riferiremo alla forma

$$x^2 + 2px = q,$$

dove p e q sono positivi, che era una forma in voga nel Quattrocento e nel Cinquecento, prima che fossero introdotti i numeri negativi. Raccogliendo x al primo membro, risulta

Per semplicità, ci riferiremo alla forma

$$x^2 + 2px = q,$$

dove p e q sono positivi, che era una forma in voga nel Quattrocento e nel Cinquecento, prima che fossero introdotti i numeri negativi. Raccogliendo x al primo membro, risulta

$$x(x+2p)=q.$$

Per semplicità, ci riferiremo alla forma

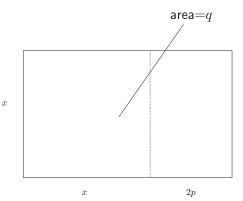
$$x^2 + 2px = q,$$

dove p e q sono positivi, che era una forma in voga nel Quattrocento e nel Cinquecento, prima che fossero introdotti i numeri negativi. Raccogliendo x al primo membro, risulta

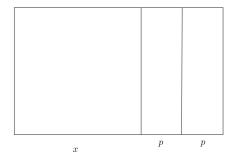
$$x(x+2p)=q.$$

Il problema può quindi essere interpretato così:

Trovare un rettangolo di area data q, aventi lati x e x + 2p:



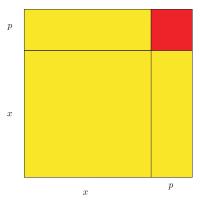
Per risolvere il problema, dividiamo il rettangolo così:



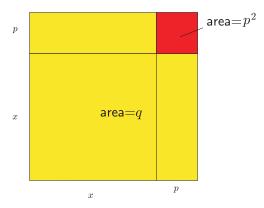
Poi portiamo una delle due "strisce" in alto, così:

	x	p
x		
p		

A questo punto, abbiamo un quadrato "meno un angolo", quello rosso...

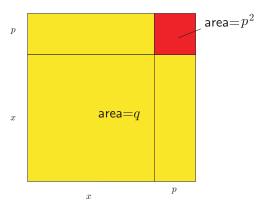


... del quale conosciamo l'area: è p^2 .

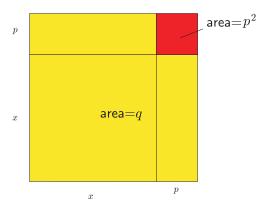


Ma allora evidentemente il lato del quadrato grande è

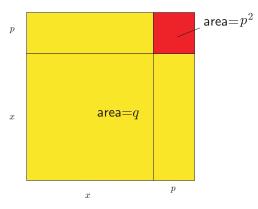
... del quale conosciamo l'area: è p^2 .



Ma allora evidentemente il lato del quadrato grande è $\sqrt{p^2+q}$,

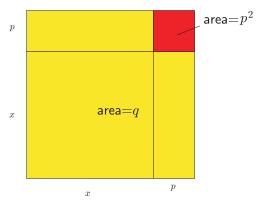


e dunque



e dunque

$$x + p = \sqrt{p^2 + q}$$

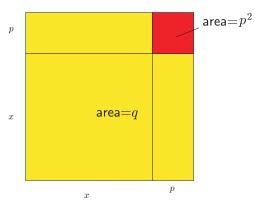


e dunque

$$x + p = \sqrt{p^2 + q}$$

da cui

$$x = \sqrt{p^2 + q} - p$$



e dunque

$$x + p = \sqrt{p^2 + q}$$

da cui

$$x = \sqrt{p^2 + q} - p$$

che è in accorto con le nostre formule semplificate.

Osserviamo che, giustamente, la costruzione offre solo la soluzione positiva (per la regola di Cartesio, l'altra è negativa).