Le biotecnologie e alcune delle produzioni più significative

Ersilia Conte

Introduzione

- Il termine Biotecnologia indica la tecnologia di cui è protagonista la cellula o, in modo più generale l'essere vivente;
- Ovvero sono le tecniche che impiegano materiale biologico (microbi, cellule vegetali, animali o parti di essa) per ottenere prodotti utili.
- Questa parola di recente adozione, ha nei suoi significati una storia antica.

Percorso storico

- Prima del 6000aC: produzione della Birra (civiltà Sumera e Babilonese)
- Intorno al 4000aC: produzione del pane (civiltà egizia)
- Intorno al 1000aC: produzione del vino
- XVIIsec: osservazione dei microorganismi da A. Van Leeuwenhoek
- XIXsec: L. Pasteur dimostra che le fermentazione sono opera di microorganismi e prepara i primi vaccini
- XIXsec: i fratelli Buchner,

- dimostrano che le fermentazioni possono avvenire anche senza l'intera cellula, ma solo con i suoi estratti.
- XXsec: C. Neuberg inibisce la fermentazione alcolica e produce glicerina ad uso bellico.
- XXsec: C. Weizmannproduce acetone mediante il Clostridium acetobuttylicum, per scopi bellici.
- 1928: Fleming osserva e scopre la produzione di pennicillina usando il Pennicilium notatum

Percorso storico continua

- 1939: H.W.Florey e E.B.Chain preparano la pennicilina pura e la caratterizzano
- 1940: la scoperta dell'enzima endonucleasi di restrizione, capace di tagliare il DNA segna l'inizio delle ricerche di manipolazione genetica.
- 1952: J.Watson e
 F.Crickcostruiscono il modello a
 doppia elica del DNA.
- 1973: nasce l'ingegneria genetica con la costruzione della prima molecola ibrida di DNA, proveniente da 2 organismi diversi.

- 1975: G.Kohler e C. Millstein producono anticorpi monoclonali coltivando linfociti e cellule tumorali. Convegno di Asilomar sulla regolamentazione della manipolazione genica.
 - **1977:** produzione industriale della somatostatina, ormone antagonista a quello della crescita, mediante un batterio manipolato.
- IIImillennio: studio, sequenziamento e mappatura del genoma umano.

Si possono individuare due grandi filoni di studio

Classico:

Che mira alla selezione del microorganismo che permette di aumentare la quantità del prodotto naturale attraverso processi industriali.

Avanzato:

Che mira alla costruzione di organismi che si differenziano dai ceppi originari per la presenza di uno o più geni inediti.

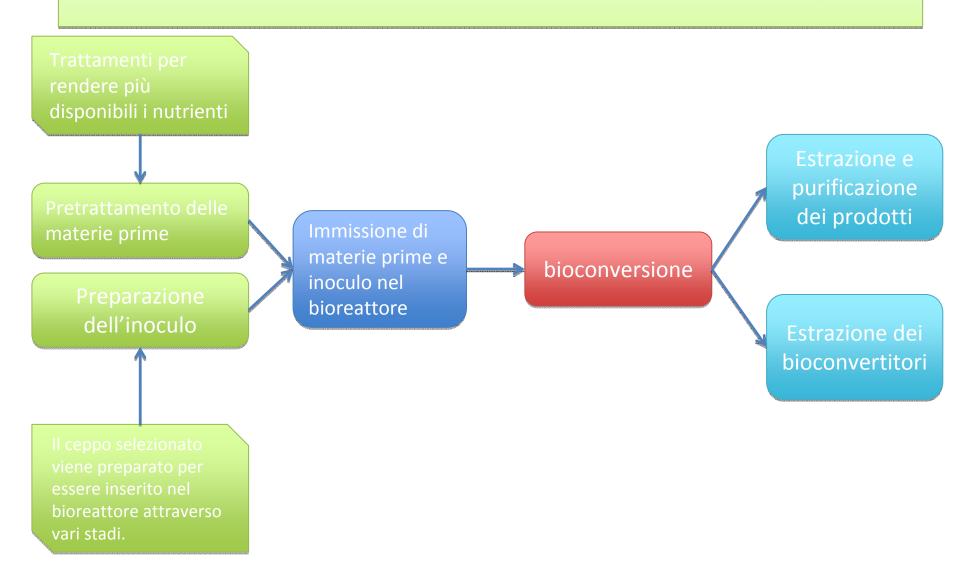
Fermentazioni

La fermentazione è la biotecnologia più antica e si avvale dell'opera di microorganismi (m.o.):

- •la più moderna definizione di fermentazioni comprende sia processi aerobici che anaerobici che si avvalgono di m.o. per produrre metaboliti,
- •che sono sostanze prodotte nei processi vitali
- •che possono essere <u>primari</u> (utili al m.o.) o <u>secondari</u> (apparentemente inutili al m.o.)

Il Fermentatore:

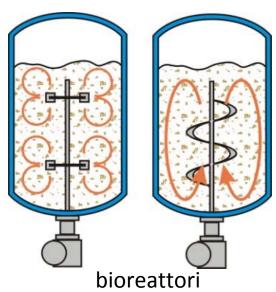
è l'impianto che simula l'ambiente naturale che permette l'attività di un dato m.o. finalizzata ad una produzione su scala industriale.


Le Materie prime

per gli impianti di fermentazione devono fornire ai m.o. tutti gli elementi e le sostanze chimiche necessarie alle sue esigenze sia energetiche che plastiche: quindi devono contenere oltre all'H₂O, adeguate fonti di C,N,P, sali minerali. Le materie prime usate possono: essere di origine naturale da agricoltura o allevamenti, o di scarto da altre produzioni industriali.

Devono essere: Economiche e Facilmente reperibili

fonti	substrato	Materia prima
С	glucosio	Cereali, melasso, amido, cellulosa
	lipidi	Oli vegetali,
	idrocarburi	petrolio
N	proteine	Soia, Residui della macinazione del mais, distillati da bevande alcoliche
	ammoniaca	Ammoniaca e ammino derivati
	nitrato	nitrati
Р	fosfati	minerali


Fasi di una produzione biotecnologica:

Produzioni biotecnologiche: alcol etilico

- L'alcool etilico è un buon solvente, un ottimo comburente, un buon substrato di partenza per sintesi specifiche e viene utilizzato anche nelle industrie dei liquori, dei cosmetici e delle essenze.
- Può essere prodotto per via chimica e per via fermentativa dall'attività metabolica di diverse specie di m.o. a spese di sostanze zuccherine, amidacee e ligno – cellulosiche, generalmente di scarto.

Materie prime	Melasse, mosti, frutta, scarti della lavorazione del legno
m.o.	Saccharomyces
Reazione in sintesi	$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2 + 108,7kJ$
Separazione finale	Dopo aver separato l'etanolo dalla biomassa, si opera una distillazione

Alcol Etilico

Le <u>fonti</u> sono di diverso tipo, da tutte è possibile estrarre zucchero fermentescibile.

I microrganismi appartengono ai generi Saccharomyces, Candida, e alcune specie come Kluyveromyces fragilis e Zymomonas mobilis. Frutta a parte, è necessario effettuare opportuni pretrattamenti sulla maggior parte delle materie prime. La barbabietola e la canna da zucchero vengono sottoposti ad estrazione a caldo in acqua: tra i prodotti ottenuti viene separato il melasso, miscela costituita essenzialmente da saccarosio.

Gli Amminoacidi

- Rappresentano un gruppo di composti che sono utilizzati come integratori alimentari o per dare sapore agli alimenti, nonchè per uso terapeutico
- Gli aminoacidi sono essenziali per molti animali superiori in quanto incapaci di sintetizzarli sono ottenuti dalle proteine del cibo o dai batteri, mentre la sorgente più importante è rappresentata dal seme di molte piante.
- Possono esistere in due forme, levogira o destrogira
 Lisina, metionina, triptofano, leucina, arginina, treonina sono tra i principali

Produzioni biotecnologiche: amminoacidi

- Gli amminoacidi vengono prodotti:
- 1) per sintesi chimica (ecomonica ma poco selettiva),
- 2) per idrolisi di proteine (parte da materie prime costose),
- 3) per fermentazione (usa materie prime poco costose ed molto selettiva).

Materie prime	Zuccheri, acido acetico, idrocarburi
m.o.	Corynebacterium glutamicum
Separazione finale	La separazione avviene per scambio ionico

La produzione industriale di aminoacidi mediante fermentazione microbica è aumentata in questi ultimi anni.

Gli aminoacidi di maggiore importanza commerciale sono l'acido glutamico e la lisina.

Acido glutammico e Lisina

Il m.o. adatto per la produzione dell'acido glutammico è il C. glutamicum, ma lo sviluppo di questo batterio necessita della presenza di biotina.

La produzione industriale viene effettuata in colture sommerse all'interno di grandi fermentatori dove il 70% del glucosio viene convertito in acido glutamico se le concentrazioni di biotina e di ossigeno sono appropriate e se le condizioni di pH e di temperatura sono ottimali.

La lisina è un aminoacido essenziale che viene impiegato come additivo alimentare; il potere nutriente del pane e dei cereali è rinforzato mediante aggiunta di lisina all'impasto di farina. Le richieste commerciali di questo aminoacido sono dunque elevate.

Il m.o. impiegato è un mutante del ceppo di C. glutamicum. In tale batterio, la lisina rappresenta uno dei prodotti terminali del ciclo dell'aspartato. La sua sintesi è regolata dalla concentrazione di treonina e della stessa lisina.

Il mutante di C. glutamicum è biotina-dipendente. Il substrato di crescita più comunemente impiegato è la molassa di canna di ligula nera.