La corrosione dei metalli

Prof. Ersilia Conte

Corrosione ossidativa

• Si definisce <u>CORROSIONE</u> il fenomeno di deterioramento dei materiali metallici, a causa di ossidazioni della superficie del materiale a contatto con l'ambiente (corrosione atmosferica).

©2012-2013 Nuova Secondaria – La Scuola Editrice SPA – Tutti i diritti riservati

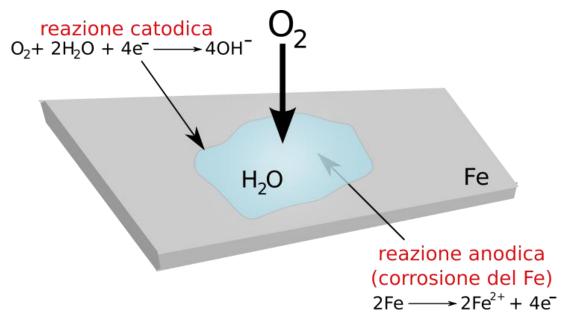
La corrosione dei metalli

Insieme di fenomeni chimici che risultano nella degradazione di un metallo (peggioramento delle proprietà chimiche e fisiche):

- Ossidazione del metallo
- Corrosione di origine chimica: azione di sostanze come SO₂, H₂S, NH₃, H₂SO₄, HNO₃
- Corrosione dovuta alle correnti elettriche vaganti nel terreno; l'acqua e i sali funzionano come elettroliti.
- Fenomeni di corrosione dovuti alla presenza CONTEMPORANEA di ossigeno e acqua

Corrosione alcune precisazioni

La corrosione è dovuta al fatto che tutti i metalli, ad eccezione dell'Au, tendono a reagire con l'O₂ dell'atmosfera e a formare ossidi. Se l'ossido formatosi ha una densità minore di quella del metallo, lo ricopre e lo protegge (Passivazione) viceversa si creano crepe e fessurazioni che consentono all'O₂ e all'H₂O di penetrare e continuare il processo corrosivo.


Tipi di corrosione

Si possono distinguere diversi casi di corrosione:

- Corrosione chimica o atmosferica
- Corrosione galvanica (leghe ferrose in ambienti salmastri)
- Corrosione inter-cristallina

Perché i metalli si corrodono

 La corrosione atmosferica è un processo spontaneo che avviene ad opera dell' O₂ dell'aria quando l'umidità atmosferica si condensa sulla superficie metallica.

Reazione di red-ox

Le reazioni interessate sono:

$$M \rightarrow M^{n+} + ne^{-}$$
 ossidazione
 $O_2 + 2H_2O + 4e^{-} \rightarrow 4OH^{-}$ riduzione
M=generico metallo che perde n° elettroni

- La corrosione avviene quando $\Delta E > 0$
- La velocità con cui avviene il processo è variabile e dipende da numerosi fattori, tra cui la presenza di Cloro o altri gas o di soluzioni di acidi e/o basi forti.

Corrosione galvanica

La corrosione galvanica avviene ogni volta che due metalli sono posti in contatto in presenza di elettroliti: si forma una cella galvanica e il materiale meno nobile si corrode.

Per ovviare a questo bisogna evitare:

- Accoppiamenti di metalli con potenziali di riduzione molto diversi
- 2. La presenza di acqua

Esperienze di Evans

 Aree a comportamento anodico (ossidazione)

Fe
$$\rightarrow$$
 Fe²⁺ + 2e⁻

Aree a comportamento catodico (riduzione)

$$O_2 + 4e^- + 2H_2O \rightarrow 4OH^-$$

Prodotti di corrosione

$$Fe^{2+} + 2OH^{-} \rightarrow Fe(OH)_2$$

In ambiente salmastro

Il fenomeno di corrosione in ambiente di NaCl e altri sali che si dissociano in acqua:

NaCl
$$\rightarrow$$
 Na⁺ + Cl⁻

Fe⁺⁺ + 2Cl⁻ \rightarrow FeCl₂

mentre al catodo so forma:

Na⁺ + OH⁻ \rightarrow NaOH

che poi reagisce

4FeCl₂ + 8NaOH + O₂ \rightarrow 2Fe₂O₃+ 8NaCl +4 H₂O

Corrosione inter-cristallina

- Si verifica in acciai inossidabili austenitici o ferritici che siano stati riscaldati ad una temperatura superiore a 500°C;
- il Cr (12-13%) forma col C il Carburo di Cromo e tende a raccogliersi intorno ai bordi dei grani presenti in questi acciai.

Si hanno due fenomeni:

- 1. L'impoverimento di una zona del grano
- Si crea una serie di micro-pile a concentrazione tra il bordo e il centro del grano che corrodono il manufatto.

Passivazione dei Metalli

I metalli con potenziale di riduzione (E°) molto alto resistono molto bene alla corrosione

Cu,
$$E^{\circ} = 0.337 \text{ Volt}$$

Au,
$$E^{\circ} = 1.42$$
Volt

Tuttavia esistono metalli resistenti alla corrosione pur avendo un potenziale redox assai negativo:

Al,
$$E^{\circ} = -1.66 \text{ V}$$
,

Ti,
$$E^{\circ} = -0.89$$
, Cr, $E^{\circ} = -0.74$)

Per questi metalli si osserva un fenomeno chiamato PASSIVAZIONE

Passivazione dei Metalli bis

Per PASSIVAZIONE si intende la :

- formazione di uno strato molto sottile di ossido, insolubile e poco reattivo (barriera cinetica)
- Di dimensioni reticolari dell'ossido poco diverse (10-15%) da quelle del metallo: buona adesione tra strato di ossido e metallo.

La Passivazione spontanea è la migliore protezione contro la corrosione

$F_{2(g)} + 2e$	e⁻ ⇔ 2F⁻	+2.87		
Au ³⁺ (aq) +	+ 3e⁻ ⇔ Au _(s)	+1.42		
$Cl_{2(g)} + 2$	2e⁻⇔Cl⁻ _(aq)	+1.36	Z	\bigcirc
$O_{2(g)} + 4$	$H^+_{(aq)} + 4e^- \Leftrightarrow 2H_2O$	+1.23		3
$\mathrm{Br}_{2\;(aq)}$ +	$2e^- \Leftrightarrow 2Br_{(aq)}$	+1.07	Nobile	Catodo
$Ag^{+}_{(aq)}$ +	$e^- \Leftrightarrow Ag_{(s)}$	+0.80	ጦ	O
Fe ³⁺ _(aq) +	$-e^- \Leftrightarrow Fe^{2+}_{(aq)}$	+0.77		
$I_{2(s)} + 2e^{-s}$	\Rightarrow 2I ⁻ _(aq)	+0.54		
	$+2e^- \Leftrightarrow Cu_{(s)}$	+0.34		
2H ⁺ _(aq) +	$2e^{-} \Leftrightarrow H_{2(g)}$	0.00		
	$+2e^- \Leftrightarrow Ni_{(s)}$	-0.14		
$Ni^{2+}_{(aq)}$ +	2e⁻ ⇔ Ni _(s) -0.25			
Cd ²⁺ (aq)	+ $2e^- \Leftrightarrow Cd_{(s)}$	-0.40	7	\triangleright
Fe ²⁺ _(aq) +	- 2 <i>e</i> ⁻ ⇔ Fe _(s)	-0.44	0	Ĭ
Cr ³⁺ (aq) +	\cdot 3e \Leftrightarrow Cr _(s)	-0.74	_	nodo
Zn ²⁺ (aq) +	· 2e⁻ ⇔ Zn _(s)	-0.83		0
Mg ²⁺ (aq)	+ 2e⁻ ⇔ Mg _(s)	-2.37	Non nobile	
Na+ _(aq) +	e - \Leftrightarrow Na _(s)	-2.71	le le	
Ca ²⁺ (aq) +	- 2 <i>e</i> -⇔ Ca _(s)	-2.76		
$K^+_{(aq)} + \epsilon$	$\Rightarrow \Leftrightarrow K_{(s)}$	-2.92	V	
$Li_{(aq)} + \epsilon$	` ,	-3.05	T. 441 1 - 11	

dei potenziali standard (25°C La serie elettrochimica

©2012-2013 Nuova Secondaria – La Scuola Editrice SPA – Tutti i diritti riservati

La serie elettrochimica dei potenziali standard

I valori sono tabulati come potenziali standard di riduzione; ogni semireazione elettrodica è riportata come riduzione

Il potenziale standard di riduzione di una certa coppia redox indica la capacità di questa coppia a comportarsi da ossidante o da riducente rispetto alla coppia H_3O^+/H_2

Lo stesso criterio può essere facilmente esteso a qualsiasi altra coppia redox, confrontando i relativi potenziali standard

Calcolo immediato della f.e.m. standard (E°) di una cella formata da due semielementi qualsiasi

(-)
$$Zn | Zn^{2+}(aq, a=1) | | Cu^{2+}(aq, a=1) | Cu (+)$$

 $E^{\circ} = E^{\circ}_{C} - E^{\circ}_{A} = E^{\circ}_{Cu^{2+}/Cu} - E^{\circ}_{Zn^{2+}/Zn} = +0.337 - (-0.763) = +1.100 \text{ V}$

Prevenzione alla corrosione

Per prevenire la corrosione è necessario isolare il manufatto dall'ambiente circostante ed eventualmente rimuovere le tracce di ruggine già formate prima di effettuare ogni tipo di trattamento:

- 1. Vernici antiruggine
- 2. Rivestire con fogli protettivi
- 3. Zincare
- 4. Effettuare cromatura o nickelatura
- 5.