Limiti notevoli

Alessandro Musesti

Università Cattolica del Sacro Cuore

Cosa sono i limiti notevoli?

In questa lezione presenteremo alcune formule importanti sui limiti, che spiegano il comportamento di funzioni note (seno, coseno, esponenziale, logaritmo) e che avranno alcune applicazioni al calcolo differenziale.

Cosa sono i limiti notevoli?

In questa lezione presenteremo alcune formule importanti sui limiti, che spiegano il comportamento di funzioni note (seno, coseno, esponenziale, logaritmo) e che avranno alcune applicazioni al calcolo differenziale.

Tali limiti vengono chiamati "notevoli" perché a partire da questi potremo calcolare molti altri limiti. Li possiamo considerare come dei nuovi attrezzi, che più avanti potremo utilizzare per compiere dei lavori più difficili e importanti.

Definizione di limite

Richiamiamo brevemente la definizione di limite, sperando che tutti l'abbiano già assimilata, o almeno digerita:

Definizione di limite

Richiamiamo brevemente la definizione di limite, sperando che tutti l'abbiano già assimilata, o almeno digerita:

Definizione

Data una funzione $f:I\to\mathbb{R}$, un punto $x_0\in I$ e un numero $\ell\in\mathbb{R}$, scriviamo

$$\lim_{x\to x_0} f(x) = \ell$$

se per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che, per ogni $x \in I$ con $|x - x_0| < \delta$ e $x \neq x_0$, si abbia $|f(x) - \ell| < \varepsilon$.

Definizione di limite

Richiamiamo brevemente la definizione di limite, sperando che tutti l'abbiano già assimilata, o almeno digerita:

Definizione

Data una funzione $f:I\to\mathbb{R}$, un punto $x_0\in I$ e un numero $\ell\in\mathbb{R}$, scriviamo

$$\lim_{x\to x_0} f(x) = \ell$$

se per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che, per ogni $x \in I$ con $|x - x_0| < \delta$ e $x \neq x_0$, si abbia $|f(x) - \ell| < \varepsilon$.

Senza commentare troppo la definizione precedente, diciamo solo che l'idea è la seguente: più ci si avvicina al numero x_0 e più i valori della funzione f si avvicinano al valore ℓ .

Richiamiamo poi un teorema importante sui limiti, che useremo ripetutamente in questa lezione.

Richiamiamo poi un teorema importante sui limiti, che useremo ripetutamente in questa lezione.

Teorema del confronto

Supponiamo di avere tre funzioni f, g, h, definite in un intorno di un punto x_0 , e tali che per ogni x si abbia $f(x) \le g(x) \le h(x)$.

Richiamiamo poi un teorema importante sui limiti, che useremo ripetutamente in questa lezione.

Teorema del confronto

Supponiamo di avere tre funzioni f, g, h, definite in un intorno di un punto x_0 , e tali che per ogni x si abbia $f(x) \le g(x) \le h(x)$.

Se vale

$$\lim_{x\to x_0} f(x) = \lim_{x\to x_0} h(x) = \ell,$$

allora vale anche

$$\lim_{x\to x_0}g(x)=\ell.$$

Richiamiamo poi un teorema importante sui limiti, che useremo ripetutamente in questa lezione.

Teorema del confronto

Supponiamo di avere tre funzioni f, g, h, definite in un intorno di un punto x_0 , e tali che per ogni x si abbia $f(x) \le g(x) \le h(x)$.

Se vale

$$\lim_{x\to x_0} f(x) = \lim_{x\to x_0} h(x) = \ell,$$

allora vale anche

$$\lim_{x\to x_0}g(x)=\ell.$$

Il teorema viene anche detto **dei due carabinieri**, perché le funzioni esterne f, h "catturano" la funzione g e la spingono nella loro direzione.

Richiamiamo poi un teorema importante sui limiti, che useremo ripetutamente in questa lezione.

Teorema del confronto

Supponiamo di avere tre funzioni f, g, h, definite in un intorno di un punto x_0 , e tali che per ogni x si abbia $f(x) \le g(x) \le h(x)$.

Se vale

$$\lim_{x\to x_0} f(x) = \lim_{x\to x_0} h(x) = \ell,$$

allora vale anche

$$\lim_{x\to x_0} g(x) = \ell.$$

Il teorema viene anche detto **dei due carabinieri**, perché le funzioni esterne f,h "catturano" la funzione g e la spingono nella loro direzione. Il risultato importante del teorema non è soltanto che il limite di g fa ℓ , ma anche che tale limite **esiste**.

Cominciamo dimostrando un limite per la funzione sen x. Vogliamo calcolare

$$\lim_{x \to 0} \frac{\sin x}{x}$$

con x misurato in radianti.

Cominciamo dimostrando un limite per la funzione sen x. Vogliamo calcolare

$$\lim_{x \to 0} \frac{\operatorname{sen} x}{x}$$

con x misurato in radianti.

Si noti che la funzione $\frac{\text{sen }x}{x}$ non è definita in 0, per cui non è possibile calcolare questo limite sfruttando la continuità (cioè "sostituendo" il valore 0 nella funzione).

Cominciamo dimostrando un limite per la funzione sen x. Vogliamo calcolare

$$\lim_{x \to 0} \frac{\operatorname{sen} x}{x}$$

con x misurato in radianti.

Si noti che la funzione $\frac{\text{sen }x}{x}$ non è definita in 0, per cui non è possibile calcolare questo limite sfruttando la continuità (cioè "sostituendo" il valore 0 nella funzione).

In più, la sostituzione darebbe come esito 0/0, che è una forma indeterminata da risolvere.

Cominciamo dimostrando un limite per la funzione sen x. Vogliamo calcolare

$$\lim_{x \to 0} \frac{\operatorname{sen} x}{x}$$

con x misurato in radianti.

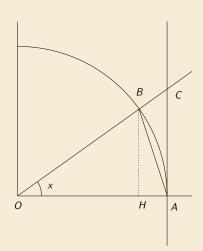
Si noti che la funzione $\frac{\text{sen }x}{x}$ non è definita in 0, per cui non è possibile calcolare questo limite sfruttando la continuità (cioè "sostituendo" il valore 0 nella funzione).

In più, la sostituzione darebbe come esito 0/0, che è una forma indeterminata da risolvere.

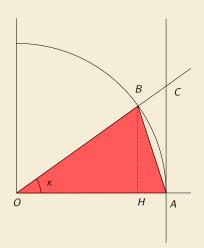
Per poter risolvere questo limite dobbiamo sfruttare le proprietà della funzione sen x, a partire proprio dalla sua definizione.

Prendiamo un angolo x nel primo quadrante sulla circonferenza goniometrica: $0 < x < \frac{\pi}{2}$.

Prendiamo un angolo x nel primo quadrante sulla circonferenza goniometrica: $0 < x < \frac{\pi}{2}$.



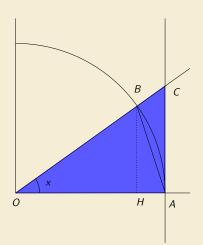
Prendiamo un angolo x nel primo quadrante sulla circonferenza goniometrica: $0 < x < \frac{\pi}{2}$. Allora si ha evidentemente che l'area del triangolo OAB



Prendiamo un angolo x nel primo quadrante sulla circonferenza goniometrica: $0 < x < \frac{\pi}{2}$. Allora si ha evidentemente che l'area del triangolo OAB è più piccola di quella del settore circolare OAB,

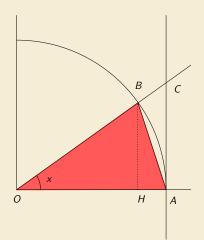


Prendiamo un angolo x nel primo quadrante sulla circonferenza goniometrica: $0 < x < \frac{\pi}{2}$. Allora si ha evidentemente che l'area del triangolo OAB è più piccola di quella del settore circolare OAB, che a sua volta è più piccola di quella del triangolo OAC.



Ricordiamo che nella circonferenza goniometrica il raggio è unitario, quindi OA = 1.

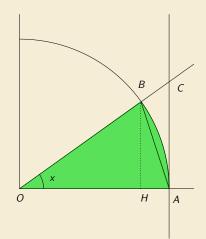
Poiché $BH = \operatorname{sen} x$, l'area del triangolo OAB vale $\frac{1}{2}\operatorname{sen} x$.



Ricordiamo che nella circonferenza goniometrica il raggio è unitario, quindi $\emph{OA}=1.$

Poiché $BH = \operatorname{sen} x$, l'area del triangolo OAB vale $\frac{1}{2} \operatorname{sen} x$.

Visto poi che x è misurato in radianti, l'area del settore circolare OAB vale $\frac{1}{2}x$.

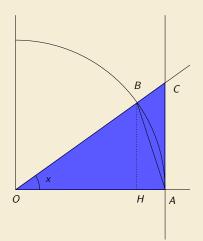


Ricordiamo che nella circonferenza goniometrica il raggio è unitario, quindi OA = 1.

Poiché $BH = \operatorname{sen} x$, l'area del triangolo OAB vale $\frac{1}{2}\operatorname{sen} x$.

Visto poi che x è misurato in radianti, l'area del settore circolare OAB vale $\frac{1}{2}x$.

Infine, poiché $CA = \operatorname{tg} x$, l'area del triangolo OAC vale $\frac{1}{2}\operatorname{tg} x$.

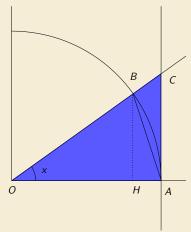


Ricordiamo che nella circonferenza goniometrica il raggio è unitario, quindi OA = 1.

Poiché $BH = \operatorname{sen} x$, l'area del triangolo OAB vale $\frac{1}{2} \operatorname{sen} x$.

Visto poi che x è misurato in radianti, l'area del settore circolare OAB vale $\frac{1}{2}x$.

Infine, poiché $CA = \operatorname{tg} x$, l'area del triangolo OAC vale $\frac{1}{2}\operatorname{tg} x$.



Si ricava quindi la stima

$$\operatorname{sen} x \le x \le \operatorname{tg} x$$

Se invece x è un angolo negativo con $-\pi/2 < x < 0$, da quanto visto prima si ha (poiché -x sta nel primo quadrante):

$$\operatorname{sen}(-x) \le -x \le \operatorname{tg}(-x)$$

Se invece x è un angolo negativo con $-\pi/2 < x < 0$, da quanto visto prima si ha (poiché -x sta nel primo quadrante):

$$sen(-x) \le -x \le tg(-x)$$

e quindi, ricordando che sen(-x) = -sen x e tg(-x) = -tg x:

$$-\operatorname{sen} x \le -x \le -\operatorname{tg} x \quad \Rightarrow \operatorname{tg} x \le x \le \operatorname{sen} x.$$

Se invece x è un angolo negativo con $-\pi/2 < x < 0$, da quanto visto prima si ha (poiché -x sta nel primo quadrante):

$$\operatorname{sen}(-x) \le -x \le \operatorname{tg}(-x)$$

e quindi, ricordando che sen(-x) = -sen x e tg(-x) = -tg x:

$$-\operatorname{sen} x \le -x \le -\operatorname{tg} x \quad \Rightarrow \operatorname{tg} x \le x \le \operatorname{sen} x.$$

In definitiva, abbiamo dimostrato le disuguaglianze

$$\operatorname{sen} x \le x \le \operatorname{tg} x$$
 per $0 < x < \frac{\pi}{2}$
 $\operatorname{tg} x \le x \le \operatorname{sen} x$ per $-\frac{\pi}{2} < x < 0$.

Quindi abbiamo

$$\operatorname{sen} x \le x \le \operatorname{tg} x$$
 per $0 < x < \frac{\pi}{2}$
 $\operatorname{tg} x \le x \le \operatorname{sen} x$ per $-\frac{\pi}{2} < x < 0$.

Quindi abbiamo

$$\operatorname{sen} x \le x \le \operatorname{tg} x$$
 per $0 < x < \frac{\pi}{2}$
 $\operatorname{tg} x \le x \le \operatorname{sen} x$ per $-\frac{\pi}{2} < x < 0$.

Ora dividiamo le disuguaglianze per sen x, tenendo conto che esso è positivo nel primo quadrante e negativo nel quarto.

Quindi abbiamo

$$\operatorname{sen} x \le x \le \operatorname{tg} x$$
 per $0 < x < \frac{\pi}{2}$
 $\operatorname{tg} x \le x \le \operatorname{sen} x$ per $-\frac{\pi}{2} < x < 0$.

Ora dividiamo le disuguaglianze per sen x, tenendo conto che esso è positivo nel primo quadrante e negativo nel quarto.

Ne segue (ricordando che tg $x = \frac{\operatorname{sen} x}{\cos x}$):

$$1 \le \frac{x}{\operatorname{sen} x} \le \frac{1}{\cos x}$$
 per $-\frac{\pi}{2} < x < \frac{\pi}{2}$, $x \ne 0$.

Quindi abbiamo

$$\operatorname{sen} x \le x \le \operatorname{tg} x$$
 per $0 < x < \frac{\pi}{2}$
 $\operatorname{tg} x \le x \le \operatorname{sen} x$ per $-\frac{\pi}{2} < x < 0$.

Ora dividiamo le disuguaglianze per sen x, tenendo conto che esso è positivo nel primo quadrante e negativo nel quarto.

Ne segue (ricordando che tg $x = \frac{\operatorname{sen} x}{\cos x}$):

$$1 \le \frac{x}{\sin x} \le \frac{1}{\cos x}$$
 per $-\frac{\pi}{2} < x < \frac{\pi}{2}$, $x \ne 0$.

Mandando $x \rightarrow 0$, dal **teorema del confronto** otteniamo che

$$\lim_{x \to 0} \frac{x}{\sin x} = 1 \qquad \Rightarrow \qquad \lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Il limite per
$$\frac{\text{sen } x}{x}$$

In definitiva, abbiamo dimostrato che

$$\lim_{x\to 0}\frac{\operatorname{sen} x}{x}=1$$

usando la definizione di senx e alcune stime geometriche.

Il limite per
$$\frac{\text{sen } x}{x}$$

In definitiva, abbiamo dimostrato che

$$\lim_{x\to 0}\frac{\operatorname{sen} x}{x}=1$$

usando la definizione di senx e alcune stime geometriche.

È importante ricordare che in questo limite x deve essere misurato in **radianti**: solo in questo modo l'area del settore circolare sulla circonferenza goniometrica è data da $\frac{1}{2}x$.

Il limite per
$$\frac{\text{sen } x}{x}$$

In definitiva, abbiamo dimostrato che

$$\lim_{x\to 0}\frac{\operatorname{sen} x}{x}=1$$

usando la definizione di senx e alcune stime geometriche.

È importante ricordare che in questo limite x deve essere misurato in **radianti**: solo in questo modo l'area del settore circolare sulla circonferenza goniometrica è data da $\frac{1}{2}x$.

Se invece x viene misurato in gradi sessagesimali, bisogna prima convertirlo in radianti e poi fare il limite:

$$\lim_{x \to 0} \frac{\sin x}{x^{\circ}} = \lim_{x \to 0} \frac{\sin x}{\frac{180}{\pi}x} = \frac{\pi}{180} \lim_{x \to 0} \frac{\sin x}{x} = \frac{\pi}{180}.$$

Un limite per cos x

Da limite notevole appena mostrato per il seno, possiamo dedurre il seguente limite per il coseno:

$$\lim_{x\to 0}\frac{1-\cos\!x}{x^2}=\frac{1}{2}$$

Un limite per cos x

Da limite notevole appena mostrato per il seno, possiamo dedurre il seguente limite per il coseno:

$$\lim_{x\to 0}\frac{1-\cos\!x}{x^2}=\frac{1}{2}$$

(si noti che anche questo è nella forma 0/0).

Un limite per cos x

Da limite notevole appena mostrato per il seno, possiamo dedurre il seguente limite per il coseno:

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

(si noti che anche questo è nella forma 0/0).

Per dimostrarlo, usiamo la formula di bisezione: $sen^2 \frac{x}{2} = \frac{1 - \cos x}{2}$,

Un limite per cos x

Da limite notevole appena mostrato per il seno, possiamo dedurre il seguente limite per il coseno:

$$\lim_{x\to 0}\frac{1-\cos\!x}{x^2}=\frac{1}{2}$$

(si noti che anche questo è nella forma 0/0).

Per dimostrarlo, usiamo la formula di bisezione: $sen^2 \frac{x}{2} = \frac{1 - \cos x}{2}$, da cui

$$\frac{1 - \cos x}{x^2} = 2 \frac{\sin^2 \frac{x}{2}}{x^2} = \frac{1}{2} \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}} \right)^2.$$

Un limite per cos x

Da limite notevole appena mostrato per il seno, possiamo dedurre il seguente limite per il coseno:

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

(si noti che anche questo è nella forma 0/0).

Per dimostrarlo, usiamo la formula di bisezione: $sen^2 \frac{x}{2} = \frac{1 - \cos x}{2}$, da cui

$$\frac{1 - \cos x}{x^2} = 2 \frac{\sin^2 \frac{x}{2}}{x^2} = \frac{1}{2} \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}} \right)^2.$$

Prendendo il limite per $x \to 0$, si ha il risultato.

Ora vogliamo dimostrare un altro limite notevole, legato alla funzione esponenziale:

$$\lim_{x\to 0}\frac{e^x-1}{x}=1.$$

Ora vogliamo dimostrare un altro limite notevole, legato alla funzione esponenziale:

$$\lim_{x\to 0}\frac{e^x-1}{x}=1.$$

Si noti che anche in questo caso il limite si presenta nella forma 0/0.

Ora vogliamo dimostrare un altro limite notevole, legato alla funzione esponenziale:

$$\lim_{x\to 0}\frac{e^x-1}{x}=1.$$

Si noti che anche in questo caso il limite si presenta nella forma 0/0.

Anche qui dovremo basarci in qualche modo sulla definizione stessa di funzione esponenziale, in particolare sulla definizione del numero di Nepero

$$e = 2,718281828459045...$$

di cui si è già parlato, ma che non è mai stato definito esplicitamente.

Ora vogliamo dimostrare un altro limite notevole, legato alla funzione esponenziale:

$$\lim_{x\to 0}\frac{\mathrm{e}^x-1}{x}=1.$$

Si noti che anche in questo caso il limite si presenta nella forma 0/0.

Anche qui dovremo basarci in qualche modo sulla definizione stessa di funzione esponenziale, in particolare sulla definizione del numero di Nepero

$$e = 2,718281828459045...$$

di cui si è già parlato, ma che non è mai stato definito esplicitamente.

Per caratterizzare il numero e utilizzeremo un modo grafico: non è completamente rigoroso, ma è abbastanza intuitivo.

Una delle proprietà di ogni funzione esponenziale $y=a^x$ è che sta sempre **sopra** una retta del tipo $y=m_ax+1$, ovvero

per ogni base a>0 dell'esponenziale, esiste un coefficiente angolare m_a tale che

$$a^x \geq m_a x + 1$$
 per ogni $x \in \mathbb{R}$.

Una delle proprietà di ogni funzione esponenziale $y=a^x$ è che sta sempre **sopra** una retta del tipo $y=m_ax+1$, ovvero

per ogni base a>0 dell'esponenziale, esiste un coefficiente angolare m_a tale che

$$a^x \ge m_a x + 1$$
 per ogni $x \in \mathbb{R}$.

Visto che sia la retta che la funzione esponenziale passano entrambe per il punto (0,1), tale proprietà implica che la retta sia **tangente** all'esponenziale in quel punto.

Una delle proprietà di ogni funzione esponenziale $y=a^x$ è che sta sempre **sopra** una retta del tipo $y=m_ax+1$, ovvero

per ogni base a>0 dell'esponenziale, esiste un coefficiente angolare m_a tale che

$$a^x \ge m_a x + 1$$
 per ogni $x \in \mathbb{R}$.

Visto che sia la retta che la funzione esponenziale passano entrambe per il punto (0,1), tale proprietà implica che la retta sia **tangente** all'esponenziale in quel punto.

Ciò è vero sia nel caso di esponenziale crescente (a > 1) che nel caso di esponenziale decrescente (0 < a < 1).

Una delle proprietà di ogni funzione esponenziale $y=a^x$ è che sta sempre **sopra** una retta del tipo $y=m_ax+1$, ovvero

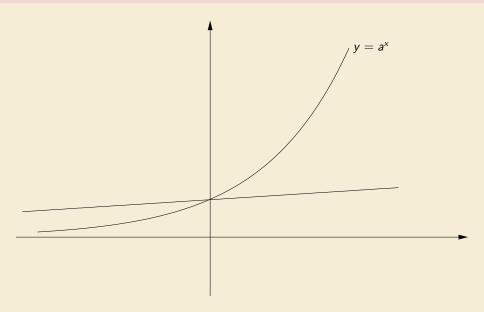
per ogni base a>0 dell'esponenziale, esiste un coefficiente angolare m_a tale che

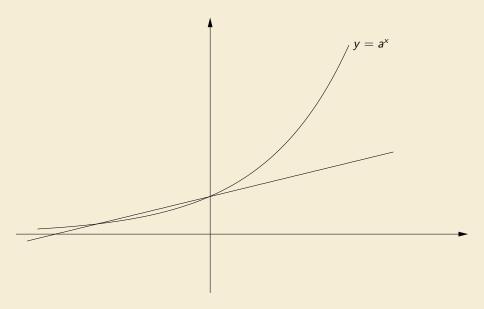
$$a^x \ge m_a x + 1$$
 per ogni $x \in \mathbb{R}$.

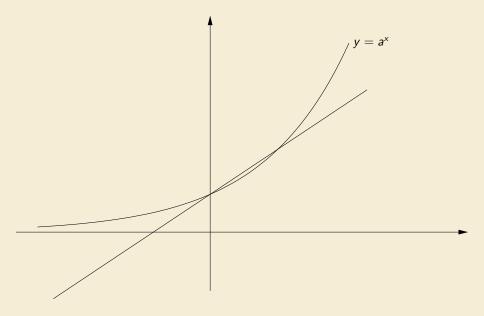
Visto che sia la retta che la funzione esponenziale passano entrambe per il punto (0,1), tale proprietà implica che la retta sia **tangente** all'esponenziale in quel punto.

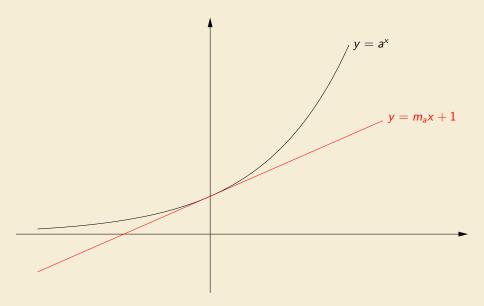
Ciò è vero sia nel caso di esponenziale crescente (a > 1) che nel caso di esponenziale decrescente (0 < a < 1).

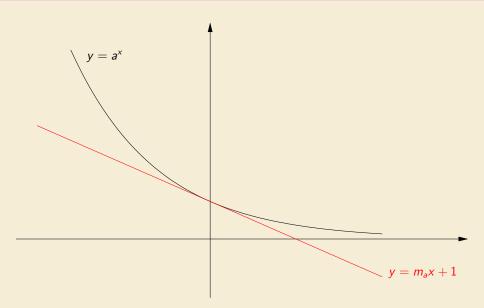
Questo è quanto diamo per buono (e che in qualche modo è compreso nella *definizione* di esponenziale). Ora cercheremo di giustificarlo con alcuni disegni.











Quindi per ogni funzione esponenziale di base a>0, $a\neq 1$, vale che

$$a^x \ge m_a x + 1$$
 per ogni $x \in \mathbb{R}$.

Quindi per ogni funzione esponenziale di base a>0, $a\neq 1$, vale che

$$a^x \geq m_a x + 1$$
 per ogni $x \in \mathbb{R}$.

Poi si può verificare che m_a assume ogni valore in $\mathbb R$ al variare di a>0: infatti m_a è positivo per a>1 e va verso $+\infty$ al crescere di a, e m_a è negativo per a<1 e va verso $-\infty$ al tendere di $a\to0$.

Quindi per ogni funzione esponenziale di base a > 0, $a \ne 1$, vale che

$$a^x \geq m_a x + 1$$
 per ogni $x \in \mathbb{R}$.

Poi si può verificare che m_a assume ogni valore in $\mathbb R$ al variare di a>0: infatti m_a è positivo per a>1 e va verso $+\infty$ al crescere di a, e m_a è negativo per a<1 e va verso $-\infty$ al tendere di $a\to0$.

In particolare, esiste un unico valore di a per cui $m_a = 1$, ovvero per cui la retta tangente è parallela alla bisettrice del primo quadrante.

Quindi per ogni funzione esponenziale di base a>0, $a\neq 1$, vale che

$$a^x \geq m_a x + 1$$
 per ogni $x \in \mathbb{R}$.

Poi si può verificare che m_a assume ogni valore in $\mathbb R$ al variare di a>0: infatti m_a è positivo per a>1 e va verso $+\infty$ al crescere di a, e m_a è negativo per a<1 e va verso $-\infty$ al tendere di $a\to0$.

In particolare, esiste un unico valore di a per cui $m_a = 1$, ovvero per cui la retta tangente è parallela alla bisettrice del primo quadrante.

Definizione

Chiamiamo e (numero di Nepero) la base dell'esponenziale per cui $m_e=1$.

Quindi per ogni funzione esponenziale di base a>0, $a\neq 1$, vale che

$$a^x \ge m_a x + 1$$
 per ogni $x \in \mathbb{R}$.

Poi si può verificare che m_a assume ogni valore in $\mathbb R$ al variare di a>0: infatti m_a è positivo per a>1 e va verso $+\infty$ al crescere di a, e m_a è negativo per a<1 e va verso $-\infty$ al tendere di $a\to0$.

In particolare, esiste un unico valore di a per cui $m_a=1$, ovvero per cui la retta tangente è parallela alla bisettrice del primo quadrante.

Definizione

Chiamiamo e (numero di Nepero) la base dell'esponenziale per cui $m_e=1$.

Con delle approssimazioni si può poi vedere che $e \simeq 2,718...$

In sintesi, la base e verifica

$$e^x \ge x + 1$$
 per ogni $x \in \mathbb{R}$.

In sintesi, la base e verifica

$$e^x \ge x + 1$$
 per ogni $x \in \mathbb{R}$.

In particolare, cambiando x in -x, si ha

$$e^{-x} \ge -x + 1,$$

In sintesi, la base e verifica

$$e^x \ge x + 1$$
 per ogni $x \in \mathbb{R}$.

In particolare, cambiando x in -x, si ha

$$e^{-x} \ge -x + 1$$
,

da cui, ricordando che $e^{-x} = 1/e^x$,

$$\frac{1}{e^x} \ge -x + 1$$

In sintesi, la base e verifica

$$e^x \ge x + 1$$
 per ogni $x \in \mathbb{R}$.

In particolare, cambiando x in -x, si ha

$$e^{-x} \ge -x + 1$$
,

da cui, ricordando che $e^{-x} = 1/e^x$,

$$\frac{1}{e^x} \ge -x + 1 \quad \Rightarrow \quad e^x \le \frac{1}{-x + 1} \quad \text{per } x < 1.$$

In sintesi, la base e verifica

$$e^x \ge x + 1$$
 per ogni $x \in \mathbb{R}$.

In particolare, cambiando x in -x, si ha

$$e^{-x} \ge -x + 1$$
,

da cui, ricordando che $e^{-x} = 1/e^x$,

$$\frac{1}{e^x} \ge -x+1 \quad \Rightarrow \quad e^x \le \frac{1}{-x+1} \qquad \text{per } x < 1.$$

Quindi abbiamo scoperto che

$$x+1 \le e^x \le \frac{1}{-x+1} \qquad \text{per } x < 1.$$

Ripartiamo da

$$x+1 \le e^x \le \frac{1}{-x+1} \qquad \text{per } x < 1$$

e togliamo 1 ai tre membri. Otteniamo

Ripartiamo da

$$x+1 \le e^x \le \frac{1}{-x+1} \qquad \text{per } x < 1$$

e togliamo 1 ai tre membri. Otteniamo

$$x \le e^x - 1 \le \frac{1}{-x+1} - 1 = \frac{x}{-x+1}.$$

Ripartiamo da

$$x+1 \le e^x \le \frac{1}{-x+1} \qquad \text{per } x < 1$$

e togliamo 1 ai tre membri. Otteniamo

$$x \le e^x - 1 \le \frac{1}{-x+1} - 1 = \frac{x}{-x+1}.$$

Se poi dividiamo tutto per x, abbiamo

$$1 \le \frac{e^{x} - 1}{x} \le \frac{1}{-x + 1} \quad \text{se } 0 < x < 1$$
$$1 \ge \frac{e^{x} - 1}{x} \ge \frac{1}{-x + 1} \quad \text{se } x < 0.$$

Ripartiamo da

$$x+1 \le e^x \le \frac{1}{-x+1} \qquad \text{per } x < 1$$

e togliamo 1 ai tre membri. Otteniamo

$$x \le e^x - 1 \le \frac{1}{-x+1} - 1 = \frac{x}{-x+1}.$$

Se poi dividiamo tutto per x, abbiamo

$$1 \le \frac{e^x - 1}{x} \le \frac{1}{-x + 1}$$
 se $0 < x < 1$
 $1 \ge \frac{e^x - 1}{x} \ge \frac{1}{-x + 1}$ se $x < 0$.

In ogni caso, applicando il teorema del confronto, otteniamo

$$\lim_{x\to 0}\frac{e^x-1}{x}=1.$$

Se vogliamo calcolare il limite notevole con una base $a>0,\ a\neq 1$, possiamo ora usare le proprietà dei logaritmi:

$$a^x = e^{\log a^x} = e^{x \log a}$$

Se vogliamo calcolare il limite notevole con una base $a>0,\ a\neq 1$, possiamo ora usare le proprietà dei logaritmi:

$$a^x = e^{\log a^x} = e^{x \log a}$$

da cui otteniamo

$$\frac{a^{x} - 1}{x} = \frac{e^{x \log a} - 1}{x} = \log a \frac{e^{x \log a} - 1}{x \log a}.$$

Se vogliamo calcolare il limite notevole con una base $a>0,\ a\neq 1$, possiamo ora usare le proprietà dei logaritmi:

$$a^{x} = e^{\log a^{x}} = e^{x \log a}$$

da cui otteniamo

$$\frac{a^{x} - 1}{x} = \frac{e^{x \log a} - 1}{x} = \log a \frac{e^{x \log a} - 1}{x \log a}.$$

Quindi, sostituendo $y = x \log a$, si ottiene

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \log a \lim_{x \to 0} \frac{e^{x \log a} - 1}{x \log a} = \log a \lim_{y \to 0} \frac{e^y - 1}{y} = \log a$$

dove il logaritmo si intende in base e.

Se vogliamo calcolare il limite notevole con una base a>0, $a\neq 1$, possiamo ora usare le proprietà dei logaritmi:

$$a^{x} = e^{\log a^{x}} = e^{x \log a}$$

da cui otteniamo

$$\frac{a^{x}-1}{x}=\frac{e^{x\log a}-1}{x}=\log a\frac{e^{x\log a}-1}{x\log a}.$$

Quindi, sostituendo $y = x \log a$, si ottiene

$$\lim_{x \to 0} \frac{a^{x} - 1}{x} = \log a \lim_{x \to 0} \frac{e^{x \log a} - 1}{x \log a} = \log a \lim_{y \to 0} \frac{e^{y} - 1}{y} = \log a$$

dove il logaritmo si intende in base e. Dunque

$$\lim_{x\to 0}\frac{a^x-1}{x}=\log a.$$

Un limite notevole per il logaritmo

Dal limite per l'esponenziale si può ricavare facilmente il seguente:

$$\lim_{x\to 0}\frac{\log(1+x)}{x}=1.$$

Un limite notevole per il logaritmo

Dal limite per l'esponenziale si può ricavare facilmente il seguente:

$$\lim_{x\to 0}\frac{\log(1+x)}{x}=1.$$

Infatti procediamo così: con una sostituzione poniamo

$$\log(1+x)=y$$

Un limite notevole per il logaritmo

Dal limite per l'esponenziale si può ricavare facilmente il seguente:

$$\lim_{x\to 0}\frac{\log(1+x)}{x}=1.$$

Infatti procediamo così: con una sostituzione poniamo

$$\log(1+x) = y \quad \Rightarrow \quad 1+x = e^y$$

Un limite notevole per il logaritmo

Dal limite per l'esponenziale si può ricavare facilmente il seguente:

$$\lim_{x\to 0}\frac{\log(1+x)}{x}=1.$$

Infatti procediamo così: con una sostituzione poniamo

$$\log(1+x) = y \implies 1+x = e^y \implies x = e^y - 1.$$

Un limite notevole per il logaritmo

Dal limite per l'esponenziale si può ricavare facilmente il seguente:

$$\lim_{x\to 0}\frac{\log(1+x)}{x}=1.$$

Infatti procediamo così: con una sostituzione poniamo

$$\log(1+x) = y \quad \Rightarrow \quad 1+x = e^y \quad \Rightarrow \quad x = e^y - 1.$$

Poiché quando $x \to 0$ si ha anche $y \to 0$, se ora sostituiamo nel limite otteniamo

$$\lim_{x \to 0} \frac{\log(1+x)}{x} = \lim_{y \to 0} \frac{y}{e^y - 1} = 1$$

per cui il limite è dimostrato.

Approfondimento: il logaritmo in base generica

Anche in questo caso, se vogliamo usare una base generica per il logaritmo, dalla regola del cambio di base

$$\log_a b = \frac{\log b}{\log a}$$

segue che

Approfondimento: il logaritmo in base generica

Anche in questo caso, se vogliamo usare una base generica per il logaritmo, dalla regola del cambio di base

$$\log_a b = \frac{\log b}{\log a}$$

segue che

$$\frac{\log_a(1+x)}{x} = \frac{\log(1+x)}{x\log a} = \frac{1}{\log a} \frac{\log(1+x)}{x},$$

Approfondimento: il logaritmo in base generica

Anche in questo caso, se vogliamo usare una base generica per il logaritmo, dalla regola del cambio di base

$$\log_a b = \frac{\log b}{\log a}$$

segue che

$$\frac{\log_a(1+x)}{x} = \frac{\log(1+x)}{x\log a} = \frac{1}{\log a} \frac{\log(1+x)}{x},$$

da cui

$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\log a}.$$

La forma indeterminata 1^{∞}

Per concludere, studiamo ora un limite che si presenta nella forma 1^∞ , che è indeterminata. Vogliamo dimostrare che

$$\lim_{x\to\infty} \left(1 + \frac{1}{x}\right)^x = e.$$

dove x può tendere sia a $+\infty$, sia a $-\infty$.

La forma indeterminata 1^{∞}

Per concludere, studiamo ora un limite che si presenta nella forma 1^∞ , che è indeterminata. Vogliamo dimostrare che

$$\lim_{x\to\infty} \left(1 + \frac{1}{x}\right)^x = e.$$

dove x può tendere sia a $+\infty$, sia a $-\infty$.

Anche in questo caso ritroviamo il numero di Nepero e.

La forma indeterminata 1^{∞}

Per concludere, studiamo ora un limite che si presenta nella forma 1^∞ , che è indeterminata. Vogliamo dimostrare che

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e.$$

dove x può tendere sia a $+\infty$, sia a $-\infty$.

Anche in questo caso ritroviamo il numero di Nepero e.

Nota: alcuni preferiscono *definire* il numero *e* in questo modo (e da questo limite ricavare i precedenti), anche se così facendo non è molto intuitivo capire che questo limite esiste ed è finito.

Procediamo calcolando il logaritmo del primo membro:

$$\log\left(1+\frac{1}{x}\right)^x =$$

Procediamo calcolando il logaritmo del primo membro:

$$\log\left(1+\frac{1}{x}\right)^x = x\log\left(1+\frac{1}{x}\right) =$$

Procediamo calcolando il logaritmo del primo membro:

$$\log\left(1+\frac{1}{x}\right)^{x} = x\log\left(1+\frac{1}{x}\right) = \frac{\log\left(1+\frac{1}{x}\right)}{\frac{1}{x}}.$$

Procediamo calcolando il logaritmo del primo membro:

$$\log\left(1+\frac{1}{x}\right)^{x} = x\log\left(1+\frac{1}{x}\right) = \frac{\log\left(1+\frac{1}{x}\right)}{\frac{1}{x}}.$$

Da $x \to \pm \infty$ segue che $\frac{1}{x} \to 0$, quindi si può usare il limite notevole del logaritmo:

$$\lim_{x \to \infty} \log \left(1 + \frac{1}{x} \right)^x = \lim_{x \to \infty} \frac{\log \left(1 + \frac{1}{x} \right)}{\frac{1}{x}} = 1.$$

Procediamo calcolando il logaritmo del primo membro:

$$\log\left(1+\frac{1}{x}\right)^{x} = x\log\left(1+\frac{1}{x}\right) = \frac{\log\left(1+\frac{1}{x}\right)}{\frac{1}{x}}.$$

Da $x \to \pm \infty$ segue che $\frac{1}{x} \to 0$, quindi si può usare il limite notevole del logaritmo:

$$\lim_{x \to \infty} \log \left(1 + \frac{1}{x} \right)^x = \lim_{x \to \infty} \frac{\log \left(1 + \frac{1}{x} \right)}{\frac{1}{x}} = 1.$$

Poiché dalla definizione di logaritmo si ha

$$a = e^{\log a}$$

Procediamo calcolando il logaritmo del primo membro:

$$\log\left(1+\frac{1}{x}\right)^{x} = x\log\left(1+\frac{1}{x}\right) = \frac{\log\left(1+\frac{1}{x}\right)}{\frac{1}{x}}.$$

Da $x \to \pm \infty$ segue che $\frac{1}{x} \to 0$, quindi si può usare il limite notevole del logaritmo:

$$\lim_{x \to \infty} \log \left(1 + \frac{1}{x} \right)^x = \lim_{x \to \infty} \frac{\log \left(1 + \frac{1}{x} \right)}{\frac{1}{x}} = 1.$$

Poiché dalla definizione di logaritmo si ha

$$a = e^{\log a}$$

e la funzione esponenziale è continua, otteniamo

$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = \lim_{x\to\infty} e^{\log\left(1+\frac{1}{x}\right)^x} = e^1 = e.$$

Esercizi

Lasciamo infine alcuni limiti notevoli legati a quelli appena mostrati, che possono essere svolti per esercizio.

$$\bullet \lim_{x\to 0} \frac{\operatorname{tg} x}{x} = 1$$

$$\bullet \lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^x = \frac{1}{e}$$

$$\bullet \lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^x = e^a$$

$$\oint_{x\to 0} \frac{1-\cos x}{x} = 0$$

$$\bullet \lim_{x\to 0}\frac{1-\cos x}{\sin^2 x}=\frac{1}{2}.$$

Svolgiamo come approfondimento un limite un po' più difficile:

$$\lim_{x \to 0} \frac{(1+x)^k - 1}{x} = k \qquad k \in \mathbb{R}.$$

Svolgiamo come approfondimento un limite un po' più difficile:

$$\lim_{x\to 0}\frac{(1+x)^k-1}{x}=k\qquad k\in\mathbb{R}.$$

Come dimostrarlo? Un trucco è quello di moltiplicare e dividere per una stessa quantità, in questo caso $k \log(1+x)$:

$$\frac{(1+x)^k - 1}{x} = \frac{(1+x)^k - 1}{k \log(1+x)} \cdot \frac{k \log(1+x)}{x}.$$

Svolgiamo come approfondimento un limite un po' più difficile:

$$\lim_{x\to 0}\frac{(1+x)^k-1}{x}=k\qquad k\in\mathbb{R}.$$

Come dimostrarlo? Un trucco è quello di moltiplicare e dividere per una stessa quantità, in questo caso $k \log(1+x)$:

$$\frac{(1+x)^k - 1}{x} = \frac{(1+x)^k - 1}{k \log(1+x)} \cdot \frac{k \log(1+x)}{x}.$$

L'ultima frazione tende a k per $x \to 0$, per il limite notevole del logaritmo.

Per trattare la prima frazione, cioè

$$\frac{(1+x)^k-1}{k\log(1+x)}$$

facciamo la sostituzione $1 + y = (1 + x)^k$.

Per trattare la prima frazione, cioè

$$\frac{(1+x)^k-1}{k\log(1+x)}$$

facciamo la sostituzione $1 + y = (1 + x)^k$.

La frazione diventa

$$\frac{y}{\log(1+y)},$$

Per trattare la prima frazione, cioè

$$\frac{(1+x)^k-1}{k\log(1+x)}$$

facciamo la sostituzione $1 + y = (1 + x)^k$.

La frazione diventa

$$\frac{y}{\log(1+y)},$$

e poiché si ha che $y \to 0$ per $x \to 0$, si ottiene che la prima frazione tende a 1.

Per trattare la prima frazione, cioè

$$\frac{(1+x)^k-1}{k\log(1+x)}$$

facciamo la sostituzione $1 + y = (1 + x)^k$.

La frazione diventa

$$\frac{y}{\log(1+y)}$$
,

e poiché si ha che $y \to 0$ per $x \to 0$, si ottiene che la prima frazione tende a 1. Quindi

$$\lim_{x\to 0} \frac{(1+x)^k - 1}{x} = \left(\lim_{v\to 0} \frac{y}{\log(1+v)}\right) \left(\lim_{x\to 0} \frac{k\log(1+x)}{x}\right) = k.$$

Per trattare la prima frazione, cioè

$$\frac{(1+x)^k-1}{k\log(1+x)}$$

facciamo la sostituzione $1 + y = (1 + x)^k$.

La frazione diventa

$$\frac{y}{\log(1+y)}$$
,

e poiché si ha che $y \to 0$ per $x \to 0$, si ottiene che la prima frazione tende a 1. Quindi

$$\lim_{x\to 0}\frac{(1+x)^k-1}{x}=\left(\lim_{y\to 0}\frac{y}{\log(1+y)}\right)\left(\lim_{x\to 0}\frac{k\log(1+x)}{x}\right)=k.$$

Questa dimostrazione vale per ogni $k \in \mathbb{R}$.