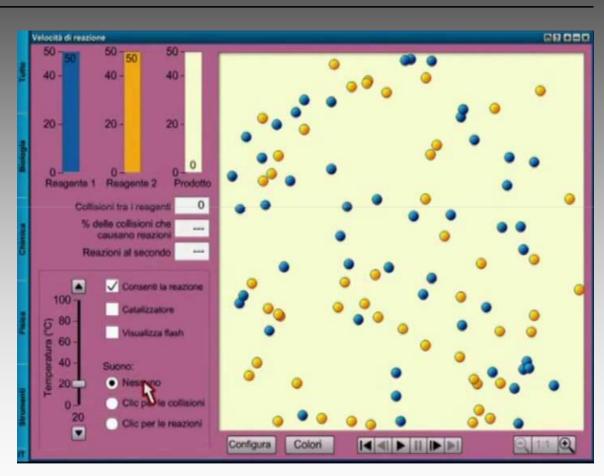
GLI ENZIMI

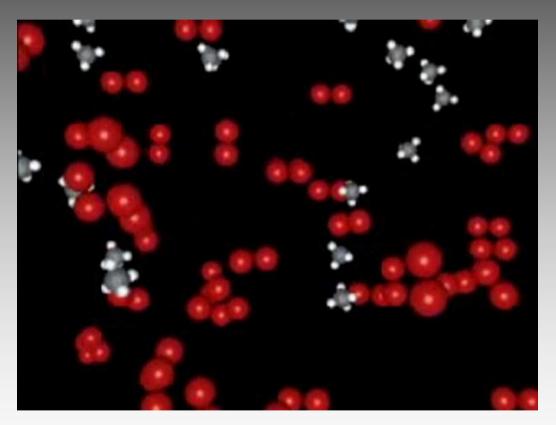
1° livello

Presentazione curata da Loredana Savì


MENU

- La velocità di una reazione chimica
- o Energia di attivazione
- o <u>Il ruolo degli enzimi</u>
- o <u>Proprietà degli enzimi</u>
- o Fattori che influenzano le reazioni catalizzate dagli enzimi
- o <u>Nomenclatura degli enzimi</u>
- o *Inibizione enzimatica*
- <u>Regolazione enzimatica</u>

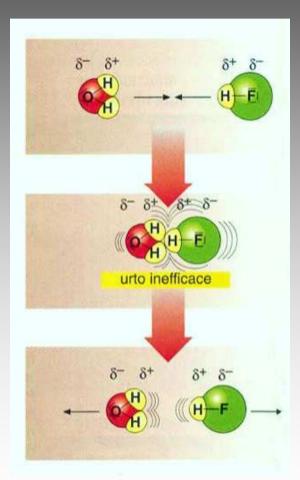
La velocità di una reazione chimica


Le molecole e gli atomi sono in costante movimento. Quando una sostanza assorbe calore gli atomi e le molecole che la compongono si muovono più rapidamente. Questo fenomeno è alla base della cinetica chimica, che permette di prevedere la velocità delle reazioni chimiche e in che modo la temperatura ed altri fattori influiscano su tale velocità.

http://www.youtube.com/watch?v=PHwzEdd1 GA

La maggior parte delle molecole che si accalcano e si scontrano a caso non possiede la energia cinetica sufficiente per avviare una reazione chimica, oppure an che quando reagiscono non lo fanno con la velocità necessaria a soddisfare il fabbisogno cellulare di prodot ti.

http://www.youtube.com/watch?v=VbIaK6PLrRM&fe
ature=related

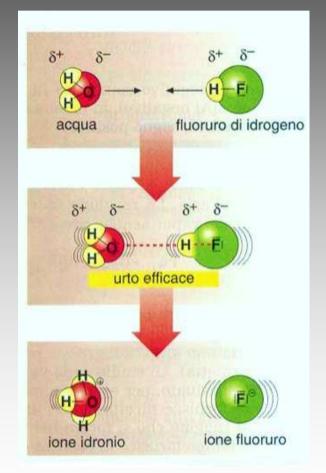


Energia di attivazione

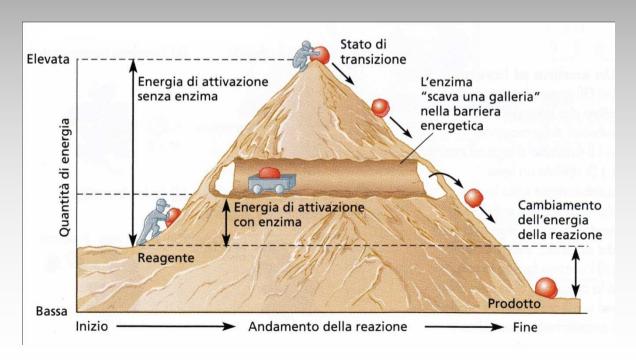
Le condizioni necessarie perché una reazione chimica si svolga sono:

- i reagenti devono trovarsi in intimo contatto reciproco per potersi urtare, tanto è più elevata la concentrazione dei reagenti tanto maggiore sarà la probabilità che la reazione avvenga;
- i reagenti devono urtarsi orientando adeguatamente gli orbitali di legame;

Esempio di urto inefficace: l'orientamento spaziale dei reagenti conseguente alla geometria delle molecole non comporta un urto favorevole e la reazione non avviene.



i reagenti devono urtarsi con una energia che sia sufficientemente elevata da permettere la rottura dei legami chimici e la formazione dei nuovi legami chimici nei prodotti di reazione.

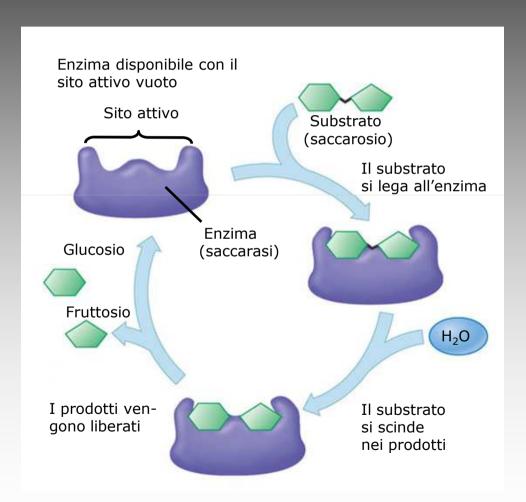

Esempio di urto efficace: i due reagenti si incontrano in condizioni ottimali e avviene la reazione

$$H_2O + HF \longrightarrow H_3O^+ + F^-$$

L'energia di collisione necessaria perché la reazione avvenga prende il nome di **energia di attivazione**; essa si può raffigurare come una barriera energetica che deve essere superata perché la reazione possa avvenire, e può essere assimilata ad una collina che un corpo pesante riesce a superare solo se gli viene impressa una spinta opportuna. Per un brevissimo istante durante la conversio ne, i legami chimici dei reagenti sono distorti, tale brevissimo stato intermedio si definisce **stato di transizione**.

Maggiore è la temperatura, maggiore è la velocità media con cui le molecole si muovono. Tuttavia la temperatura è soltanto una misura dell'energia media posseduta dalle molecole: ciascuna può infatti possedere una diversa quantità di energia cinetica.

Se però l'ambiente si riscalda, tutte le reazioni cellulari accelerano e non soltanto quelle necessarie. Inoltre un eccessivo aumento di temperatura sareb-

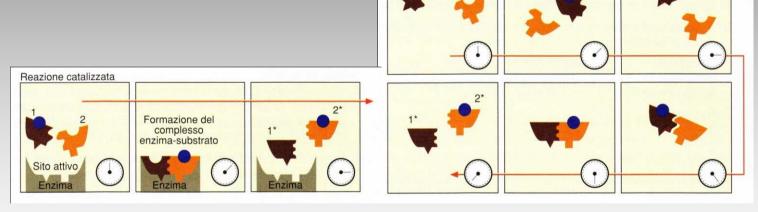


http://www.youtube.com/watch?v=V4
OPO6JQLOE

be letale per la cellula, perché provocherebbe la rottura di molti legami che tengono insieme la struttura delle molecole proteiche. Se non si può aumentare l'energia delle molecole occorre allora abbassare la energia di attivazione, ciò è possibile mediante l'azione di particolari proteine che prendono il nome di **enzimi**.

Il ruolo degli enzimi

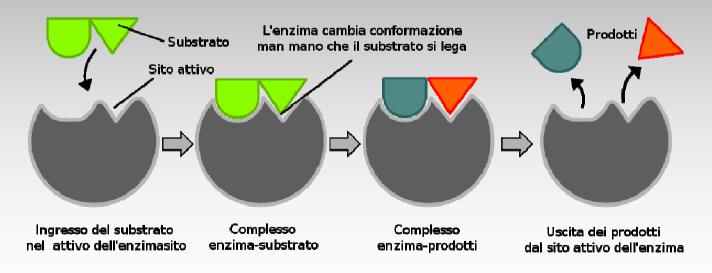
L'enzima favorisce l'incontro delle molecole dei reagenti e la formazione dei prodotti, senza intervenire direttamente nella reazione chimica.


Il reagente specifico sul quale agisce un enzima è indicato come **substrato**; un substrato si lega ad una regione dell'enzima chiamata **sito attivo**, una sorta di tasca presente sulla superficie dell'enzima.

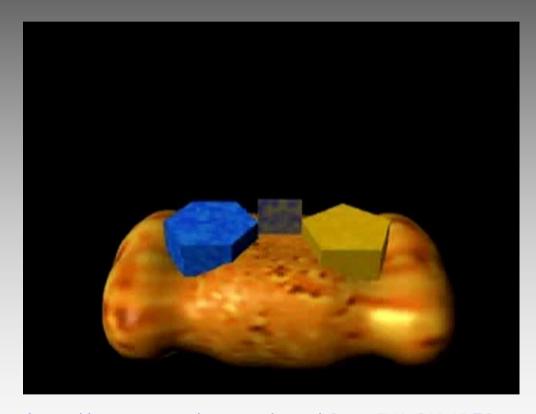
Modello chiave - serratura

L'enzima ed il relativo substrato combaciano secondo un meccanismo spiegabile con il modello **chiave-serratura** (l'enzima è stato paragonato ad una serratura, il substrato alla chiave specifica), dall'interazione si forma il complesso **enzima-substrastrato**.

Reazione non catalizzata


La reazione avviene più velocemente: i reagenti (substrato) si adattano all'enzima (sito attivo).

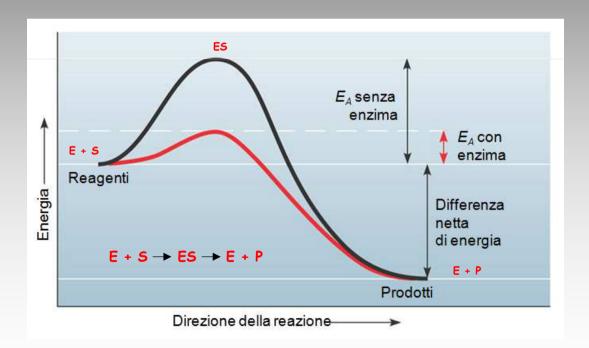
La reazione avviene solo quando i due reagenti si incontrano casualmente.



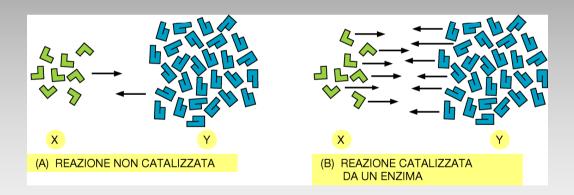
Modello ad adattamento indotto

L'evidenza sperimentale ha messo in luce che il modello **chiave-serratura** non risponde più alle esigenze dei fenomeni osservati. Il **modello ad adattamento indotto** propone che il sito attivo dell'enzima può cambiare forma quando il substrato vi si lega, adattandosi meglio ad esso. In questo processo la molecola cambia leggermente conformazione e modifica l'orientamento dei substrati coinvolti, stirando e distorcendo le loro molecole, cosicché queste vengano a contatto tra di loro in corrispondenza di determinate zone della loro superficie.

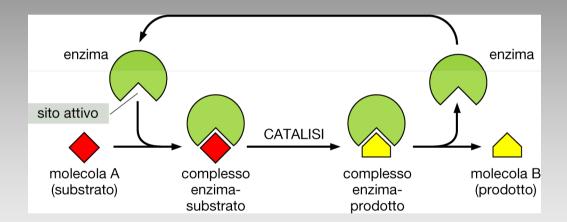
http://www.youtube.com/watch?v=zFWsSjA4R58


Proprietà degli enzimi

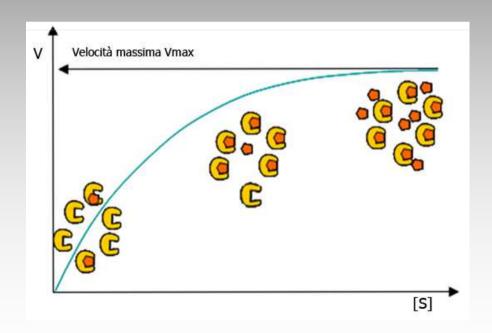
Gli enzimi sono proteine globulari (la loro struttura tridimensionale è conseguente al ripiegamento delle molecole tale da far assumere loro una forma pseudo-sferica).



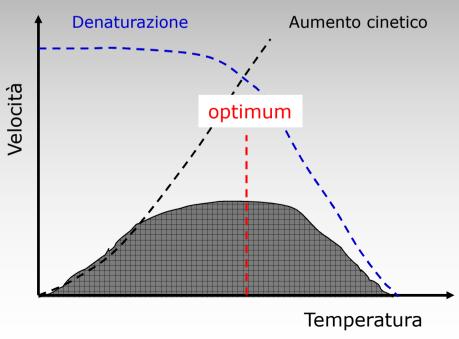
Sono catalizzatori biologici in grado di aumentare la velocità delle reazioni abbassando l'energia di attivazione, cioè agiscono su un singolo substrato, o su un numero limitato di substrati chimicamente simili. Molti catalizzatori inorganici, invece, possono promuovere indiscriminatamente differenti reazioni chimiche.

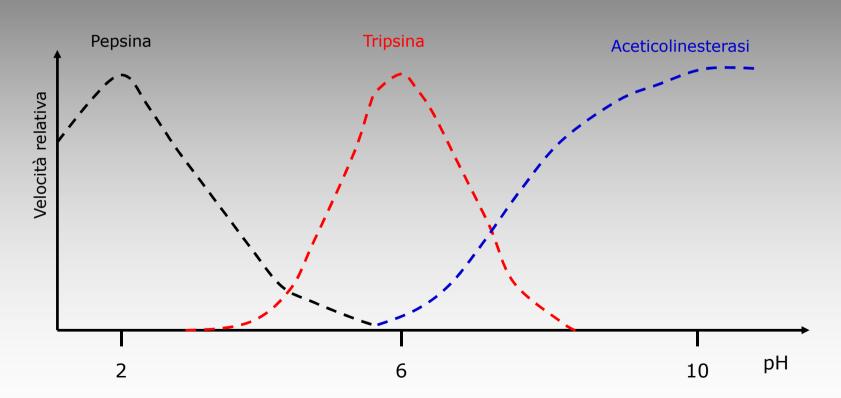


- Gli enzimi agiscono in piccole quantità.
- Sono dotati di elevatissima specificità.
- Non modificano l'equilibrio della reazione, ma solo la velocità con la quale l'equilibrio viene raggiunto.


Gli enzimi non si consumano nel corso delle rea - zioni, al termine del processo possono perciò essere riutilizzati.

Fattori che influenzano le reazioni catalizzate dagli enzimi


La concentrazione del substrato: facendo reagire quantità definite di enzima [E] con concentrazioni via via crescenti di substrato [S], la velocità della reazio ne, in un primo tempo aumenta linearmente in modo proporzionale alla concentrazione del substrato stesso, successivamente in modo non proporzionale fino ad un massimo (Vmax), raggiunto il quale rimane costante anche se la concentrazione del substrato aumenta ulteriormente.

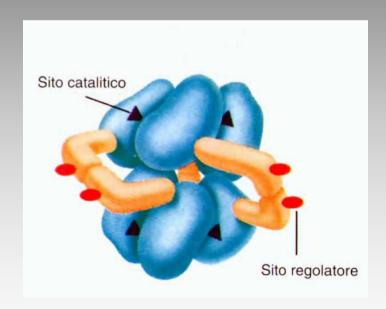

<u>La concentrazione dell'enzima</u>: in presenza di un eccesso di substrato l'attività enzimatica aumenta proporzionalmente alla concentrazione dell'enzima.

<u>La temperatura</u>: essa influisce sul movimento delle molecole, quella ottimale è la temperatura che produce la più alta percentuale di collisioni tra le molecole dei reagenti ed il sito attivo dell'enzima. Temperature molto elevate denaturano l'enzima. La stabilità di una proteina dipende dalla temperatura.

III pH: la maggior parte degli enzimi opera in uno stretto intervallo di pH compreso tra 6 e 8.

<u>I cofattori</u>: Per funzionare, alcuni enzimi richiedono molecole non proteiche chiamate cofattori. I cofattori possono essere sostanze inorganiche, come gli ioni metallo, o molecole organiche, in questo caso si chiamano coenzimi.

Oloenzima: Molecola proteica + gruppo prostetico


Apoenzima: Molecola proteina

Gruppo prostetico

Cofattore - (metallo)

Coenzima - (composto organico)

Gli enzimi allosterici: sono caratterizzati da una struttura quaternaria, in essi esistono più siti chimicamente attivi: quello per il substrato ed un altro al quale si può legare un effettore allosterico positivo o negativo.

Nomenclatura degli enzimi

Gli enzimi sono suddivisi in **6 classi**, in base alla reazione catalizzata. Gli enzimi hanno una doppia nomenclatura: un **nome corrente** di uso comune e un **nome sistematico**.

Il nome sistematico ha lo scopo di definire con maggior precisione la reazione catalizzata.

- → Denominazione <u>classica</u> costituita da 3 parti:
 - Nome del substrato (Lattico)
 - Nome del coenzima (NAD)
 - Nome della reazione catalizzata + "asi" (deidrogenasi)
 Esempio: Lattico-NAD-deidrogenasi
- → International Enzyme Commission (EC), fondata nel 1956 da Prof. M. Florkin, International Union of Biochemistry:
 - Classificazione degli enzimi secondo il sistema delle classi EC Esempi: Lattato deidrogenasi: EC 1.1.1.27.

Adenosintrifosfato: creatin N-fosfo trasferasi

Creatin kinasi: EC 2.7.3.2.

Lattato: NAD+ ossidoreduttasi

EC

1 = classe ossidoriduttasi

1 = sotto classe

1 = sotto sotto classe

27 = 27esima posizione nella sotto sotto classe

Classi:

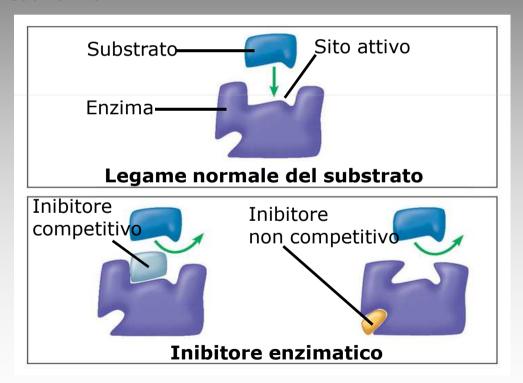
1: Ossidoreduttasi

2: Transferasi

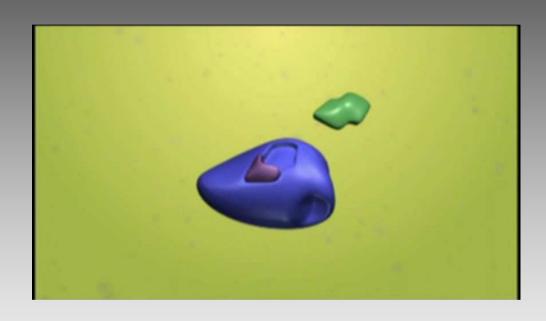
3: Idrolasi

4: Liasi

5: Isomerasi

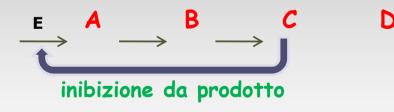

6: Ligasi

Inibizione enzimatica


Gli inibitori competitivi occupano il sito attivo di un substrato.

Gli inibitori non copetitivi cambiano la funzione dell'enzima modificando la sua forma.

Gli inibitori incompetitivi si legano reversibilmente al complesso enzima-substrato durante il processo catalitico.



http://www.youtube.com/watch?v=PILzvT3spCQ&l ist=QL&feature=BF

Regolazione enzimatica

Le cellule usano gli inibitori per regolare il proprio metabolismo. Nella cellula la maggior parte delle reazioni chimiche è organizzata in vie metaboliche lungo le quali una molecola viene modificata in una serie di passaggi per formare un prodotto finale. Se una cellula produce una quantità di prodotto maggiore di quella di cui necessita, il prodotto stesso può comportarsi da inibitore di uno degli enzimi coinvolti nelle prime tappe della via metabolica. Questo tipo di inibizione, nella quale una reazione viene bloccata dai suoi stessi prodotti, è detta **feed-back negativo** (o **retroazione negativa**) e rappresenta uno dei più importanti meccanismi regolatori del metabolismo cellulare.

Ogni lettera indica un substrato che è contemporaneamente il prodotto di una reazione precedente; il prodotto D può inibire l'enzima che catalizza la reazione $A \rightarrow B$

