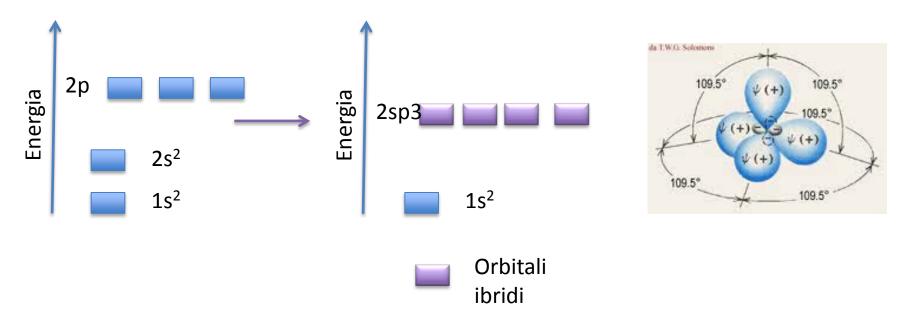
Dal Carbonio agli Idrocarburi

Ersilia Conte

Carbonio

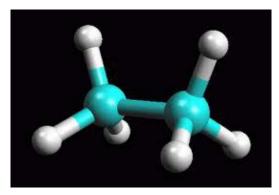
Il Carbonio è il primo elemento del <u>IV gruppo</u> della Tavola Periodica degli elementi.

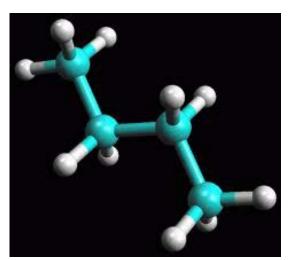
Il C ha 6 elettroni e 4 di questi si trovano nel guscio più esterno; la sua configurazione elettronica è:


$$C = 1s^2 2s^2 2p_x^1 2p_y^1$$

Per raggiungere la configurazione elettronica completa deve acquistare:

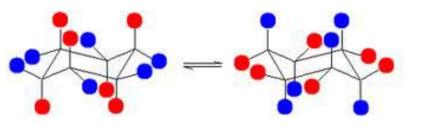
- 4 elettroni
- formando 4 legami covalenti


Le ibridazioni del Carbonio sp₃


L'IBRIDAZIONE sp₃: in cui l'orbitale 2s e i tre orbitali p, si ibridano a formare <u>quattro</u> orbitali sp₃ con angoli di 109,5°; caratteristica degli ALCANI, in cui i C sono ibribati sp₃ formando quattro legami = struttura tetraedica

Alcani

- Formano una serie omologa, in cui ogni termine differisce dal successivo per una quantità costante (-CH₂-).
- Le molecole sono apolari, con <u>punti di</u> <u>ebollizione bassi</u>.
- La formula generale è C_nH_{2n+2}

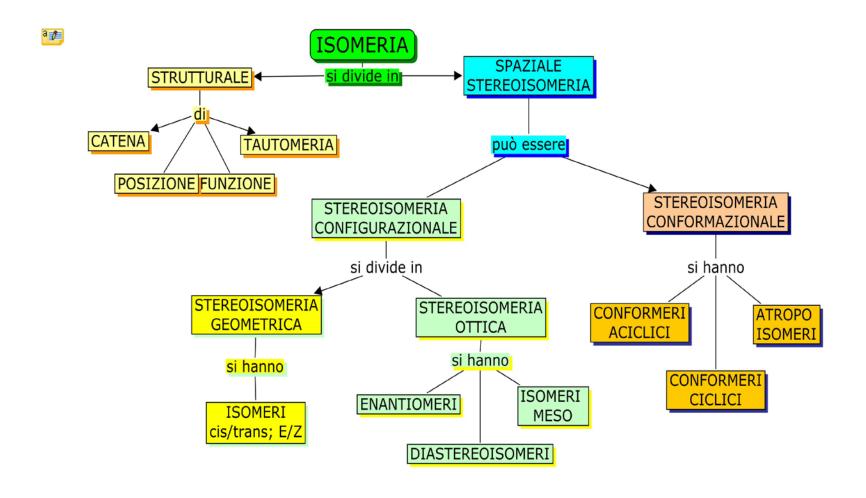


Nomenclatura degli alcani lineari

Nome	Formula molecolare C _n H _{2n+2}	Formula di struttura	Punto di ebollizione °C	Punto di fusione °C
metano	CH ₄	CH ₄	-161	-183
etano	C_2H_6	CH ₃ CH ₃	-88	-172
propano	C_3H_8	CH ₃ CH ₂ CH ₃	-45	-187
butano	C_4H_{10}	CH ₃ CH ₂ CH ₂ CH ₃	-0.5	-138
pentano	C ₅ H ₁₂	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	36	-130
esano	C_6H_{14}	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	69	-95
eptano	C ₇ H ₁₆	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	98	-90
ottano	C_8H_{18}	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	125	-57
nonano	C_9H_{20}	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	151	-54
decano	C ₁₀ H ₂₂	CH ₃ CH ₂	174	-30

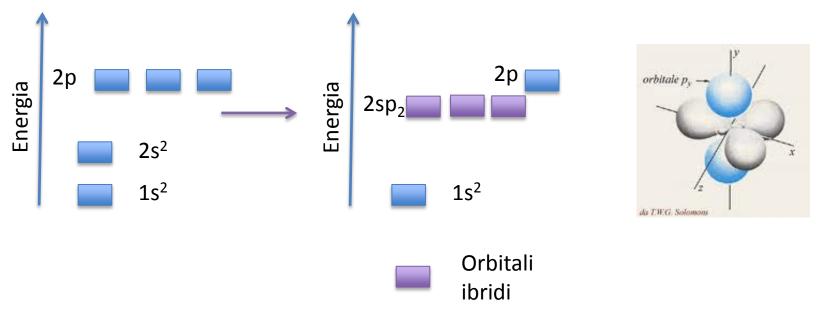
Cicloalcani

 I cicloalcani sono idrocarburi saturi i cui atomi di "C" formano almeno un anello. La formula generale è C_nH_{2n}.


Il ciclo più stabile è il cicloesano

Isomeria di struttura

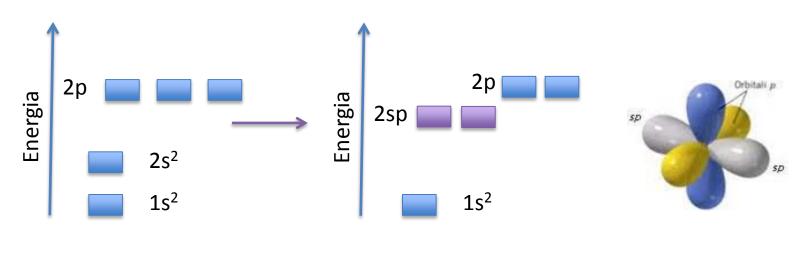
Due o più sostanze con la stessa formula bruta, differiscono per almeno una delle loro proprietà chimiche o fisiche: ciò dipende dalla diversa distribuzione degli atomi nella molecola, formule di struttura diverse.


Per es. osserviamo la molecola C₄H₁₀ del butano:

Isomeria APPROFONDIMENTO

Le ibridazioni del Carbonio sp₂

 <u>L'IBRIDAZIONE</u> sp₂: in cui l'orbitale 2s e i due orbitali p, si ibridano a formare <u>tre</u> orbitali sp₂ caratteristica degli ALCHENI, in cui i C sono ibribati sp₂

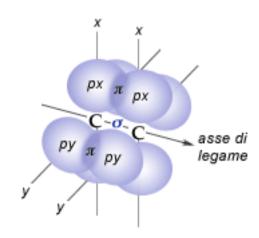


Alcheni

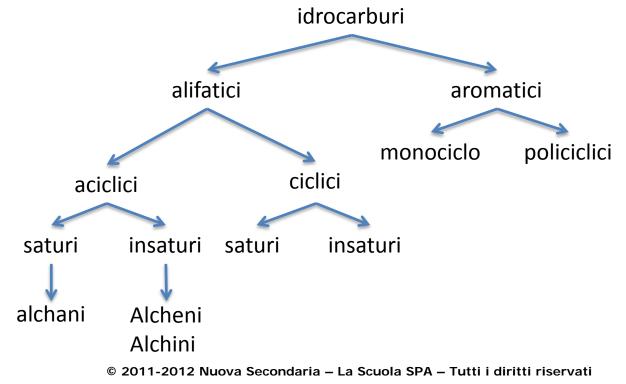
- Sono caratterizzati dalla presenza di almeno un doppio legame, con almeno due C ibridati sp₂.
- La formula generale è C_nH_{2n}

Le ibridazioni del Carbonio sp

 <u>L'IBRIDAZIONE</u> sp: in cui l'orbitale 2s e un orbitale p, si ibridano a formare <u>due</u> orbitali sp caratteristica degli ALCHINI, in cui i C sono ibribati sp



Alchini


- Sono caratterizzati dalla presenza di almeno un triplo legame, con almeno due C ibridati sp.
- La formula generale è C_nH_n

$$\begin{array}{ccc} CH \equiv CH & CH \equiv C-CH_3 \\ \text{etino} & \text{propino} \end{array}$$

$$CH \equiv C-CH-CH_3 & CH_3-C\equiv C-CH_3 \\ 1-\text{butino} & 2-\text{butino} \end{array}$$

Idrocarburi

 Gli idrocarburi sono composti che contengono solo atomi di H e C e, seconda del tipo di legami chimici presenti nella molecola, possono essere suddivisi:

Proprietà fisiche degli idrocarburi

- Sia gli alcani che i cicloalcani sono composti poco polari, quindi sono poco affini all'acqua e molto alle sostanze apolari, per le quali costituiscono ottimi solventi.
- I composti che appartengono alla stessa serie presentano caratteristiche chimico –fisiche analoghe.

Proprietà fisiche degli idrocarburi-bis

- I <u>Punti di Ebollizione</u> aumentano all'aumentare della massa molecolare. I primi 4 alcani sono gas, fino a 15 sono liquidi e poi sono solidi.
- Le catene lineari hanno punti di ebollizione superiori a quelli delle catene ramificate.
- I <u>Punti di Fusione</u> sono superiori per le catene ramificate rispetto a quelle lineari.

Proprietà chimiche degli idrocarburi

- Gli alcani sono poco reattivi, per questo venivano chiamati paraffine (parum affinis = poco affine)
- Le uniche reazioni cui partecipano sono:
- 1. La combustione
- 2. L'alogenazione
- 3. Il cracking

Reazioni degli idrocarburi

• <u>Combustione</u> = ossidazione fortemente esotermica $CH_4 + O_2 \rightarrow CO_2 + 2H_2O$

• <u>Alogenazione</u> = reazione di sostituzione radicalica tra alcani e alogeni in presenza di luce

$$CH_4 + Cl_2 \rightarrow CH_3CI + CH_2Cl_2 + CHCl_3 + CCl_4$$

 <u>Cracking</u> = dall'inglese spezzare, comporta la rottura dei legami C-C e C-H, con formazione di molecole più piccole.